49 research outputs found

    Quelques remarques sur les taillis de chĂȘnes verts : rĂ©partition, histoire, biomasse

    Get PDF

    Moonraker -- Enceladus Multiple Flyby Mission

    Full text link
    Enceladus, an icy moon of Saturn, possesses an internal water ocean and jets expelling ocean material into space. Cassini investigations indicated that the subsurface ocean could be a habitable environment having a complex interaction with the rocky core. Further investigation of the composition of the plume formed by the jets is necessary to fully understand the ocean, its potential habitability, and what it tells us about Enceladus' origin. Moonraker has been proposed as an ESA M-class mission designed to orbit Saturn and perform multiple flybys of Enceladus, focusing on traversals of the plume. The proposed Moonraker mission consists of an ESA-provided platform, with strong heritage from JUICE and Mars Sample Return, and carrying a suite of instruments dedicated to plume and surface analysis. The nominal Moonraker mission has a duration of 13.5 years. It includes a 23-flyby segment with 189 days allocated for the science phase, and can be expanded with additional segments if resources allow. The mission concept consists in investigating: i) the habitability conditions of present-day Enceladus and its internal ocean, ii) the mechanisms at play for the communication between the internal ocean and the surface of the South Polar Terrain, and iii) the formation conditions of the moon. Moonraker, thanks to state-of-the-art instruments representing a significant improvement over Cassini's payload, would quantify the abundance of key species in the plume, isotopic ratios, and physical parameters of the plume and the surface. Such a mission would pave the way for a possible future landed mission.Comment: Accepted for publication in The Planetary Science Journa

    Moonraker: Enceladus Multiple Flyby Mission

    Get PDF
    Enceladus, an icy moon of Saturn, possesses an internal water ocean and jets expelling ocean material into space. Cassini investigations indicated that the subsurface ocean could be a habitable environment having a complex interaction with the rocky core. Further investigation of the composition of the plume formed by the jets is necessary to fully understand the ocean, its potential habitability, and what it tells us about Enceladus’s origin. Moonraker has been proposed as an ESA M-class mission designed to orbit Saturn and perform multiple flybys of Enceladus, focusing on traversals of the plume. The proposed Moonraker mission consists of an ESA-provided platform with strong heritage from JUICE and Mars Sample Return and carrying a suite of instruments dedicated to plume and surface analysis. The nominal Moonraker mission has a duration of ∌13.5 yr. It includes a 23-flyby segment with 189 days allocated for the science phase and can be expanded with additional segments if resources allow. The mission concept consists of investigating (i) the habitability conditions of present-day Enceladus and its internal ocean, (ii) the mechanisms at play for the communication between the internal ocean and the surface of the South Polar Terrain, and (iii) the formation conditions of the moon. Moonraker, thanks to state-of-the-art instruments representing a significant improvement over Cassini's payload, would quantify the abundance of key species in the plume, isotopic ratios, and the physical parameters of the plume and the surface. Such a mission would pave the way for a possible future landed mission

    Atmospheric Science with InSight

    Get PDF
    International audienceIn November 2018, for the first time a dedicated geophysical station, the InSight lander, will be deployed on the surface of Mars. Along with the two main geophysical packages, the Seismic Experiment for Interior Structure (SEIS) and the Heat-Flow and Physical Properties Package (HP3), the InSight lander holds a highly sensitive pressure sensor (PS) and the Temperature and Winds for InSight (TWINS) instrument, both of which (along with the InSight FluxGate (IFG) Magnetometer) form the Auxiliary Sensor Payload Suite (APSS). Associated with the RADiometer (RAD) instrument which will measure the surface brightness temperature, and the Instrument Deployment Camera (IDC) which will be used to quantify atmospheric opacity, this will make InSight capable to act as a meteorological station at the surface of Mars. While probing the internal structure of Mars is the primary scientific goal of the mission, atmospheric science remains a key science objective for InSight. InSight has the potential to provide a more continuous and higher-frequency record of pressure, air temperature and winds at the surface of Mars than previous in situ missions. In the paper, key results from multiscale meteorological modeling, from Global Climate Models to Large-Eddy Simulations, are described as a reference for future studies based on the InSight measurements during operations. We summarize the capabilities of InSight for atmospheric observations, from profiling during Entry, Descent and Landing to surface measurements (pressure, temperature, winds, angular momentum), and the plans for how InSight’s sensors will be used during operations, as well as possible synergies with orbital observations. In a dedicated section, we describe the seismic impact of atmospheric phenomena (from the point of view of both “noise” to be decorrelated from the seismic signal and “signal” to provide information on atmospheric processes). We discuss in this framework Planetary Boundary Layer turbulence, with a focus on convective vortices and dust devils, gravity waves (with idealized modeling), and large-scale circulations. Our paper also presents possible new, exploratory, studies with the InSight instrumentation: surface layer scaling and exploration of the Monin-Obukhov model, aeolian surface changes and saltation / lifing studies, and monitoring of secular pressure changes. The InSight mission will be instrumental in broadening the knowledge of the Martian atmosphere, with a unique set of measurements from the surface of Mars

    Moonraker — Enceladus Multiple Flyby Mission

    Get PDF
    Enceladus, an icy moon of Saturn, possesses an internal water ocean and jets expelling ocean material into space. Cassini investigations indicated that the subsurface ocean could be a habitable environment having a complex interaction with the rocky core. Further investigation of the composition of the plume formed by the jets is necessary to fully understand the ocean, its potential habitability, and what it tells us about Enceladus's origin. Moonraker has been proposed as an ESA M-class mission designed to orbit Saturn and perform multiple flybys of Enceladus, focusing on traversals of the plume. The proposed Moonraker mission consists of an ESA-provided platform with strong heritage from JUICE and Mars Sample Return and carrying a suite of instruments dedicated to plume and surface analysis. The nominal Moonraker mission has a duration of ∌13.5 yr. It includes a 23-flyby segment with 189 days allocated for the science phase and can be expanded with additional segments if resources allow. The mission concept consists of investigating (i) the habitability conditions of present-day Enceladus and its internal ocean, (ii) the mechanisms at play for the communication between the internal ocean and the surface of the South Polar Terrain, and (iii) the formation conditions of the moon. Moonraker, thanks to state-of-the-art instruments representing a significant improvement over Cassini's payload, would quantify the abundance of key species in the plume, isotopic ratios, and the physical parameters of the plume and the surface. Such a mission would pave the way for a possible future landed mission

    The Hera Radio Science Experiment at Didymos

    Get PDF
    Hera represents the European Space Agency's inaugural planetary defense space mission and plays a pivotal role in the Asteroid Impact and Deflection Assessment international collaboration with NASA DART mission that performed the first asteroid deflection experiment using the kinetic impactor techniques. With the primary objective of conducting a detailed post-impact survey of the Didymos binary asteroid following the DART impact on its small moon called Dimorphos, Hera aims to comprehensively assess and characterize the feasibility of the kinetic impactor technique in asteroid deflection while conducting an in-depth investigation of the asteroid binary, including its physical and compositional properties as well as the effect of the impact on the surface and shape of Dimorphos. In this work, we describe the Hera radio science experiment, which will allow us to precisely estimate critical parameters, including the mass, which is required to determine the momentum enhancement resulting from the DART impact, mass distribution, rotational states, relative orbits, and dynamics of the asteroids Didymos and Dimorphos. Through a multi-arc covariance analysis, we present the achievable accuracy for these parameters, which consider the full expected asteroid phase and are based on ground radiometric, Hera optical images, and Hera to CubeSats InterSatellite Link radiometric measurements. The expected formal uncertainties for Didymos and Dimorphos GM are better than 0.01% and 0.1%, respectively, while their J2 formal uncertainties are better than 0.1% and 10%, respectively. Regarding their rotational state, the absolute spin pole orientations of the bodies can be recovered to better than 1°, and Dimorphos' spin rate to better than 10−3%. Dimorphos reconstructed relative orbit can be estimated at the sub-m level. Preliminary results, using a higher-fidelity dynamical model of the coupled motion between rotational and orbital dynamics, show uncertainties in the main parameters of interest that are comparable to those in standard radio science models. A first-order estimate of the expected uncertainty in the momentum transfer efficiency from DART's impact, obtainable with Hera, yields a value of about 0.25. This represents a significant improvement compared to current estimates. Overall, the retrieved values meet the Hera radio science requirements and goals, and remain valid under the condition that the system is determined to be in an excited but non-chaotic (or tumbling) state. The Hera radio science experiment will play an integral role in the exploration of the Didymos binary asteroid system and will provide unique scientific measurements, which, when combined with other observables such as optical images, altimetry measurements, and satellite-to-satellite tracking of the CubeSats, will support the mission's overarching goals in planetary defense and the deep understanding of binary asteroids

    Quelques remarques sur les taillis de chĂȘnes verts : rĂ©partition, histoire, biomasse

    No full text
    International audienc
    corecore