34 research outputs found

    Introgression of Ivermectin Resistance Genes into a Susceptible Haemonchus contortus Strain by Multiple Backcrossing

    Get PDF
    Anthelmintic drug resistance in livestock parasites is already widespread and in recent years there has been an increasing level of anthelmintic drug selection pressure applied to parasitic nematode populations in humans leading to concerns regarding the emergence of resistance. However, most parasitic nematodes, particularly those of humans, are difficult experimental subjects making mechanistic studies of drug resistance extremely difficult. The small ruminant parasitic nematode Haemonchus contortus is a more amenable model system to study many aspects of parasite biology and investigate the basic mechanisms and genetics of anthelmintic drug resistance. Here we report the successful introgression of ivermectin resistance genes from two independent ivermectin resistant strains, MHco4(WRS) and MHco10(CAVR), into the susceptible genome reference strain MHco3(ISE) using a backcrossing approach. A panel of microsatellite markers were used to monitor the procedure. We demonstrated that after four rounds of backcrossing, worms that were phenotypically resistant to ivermectin had a similar genetic background to the susceptible reference strain based on the bulk genotyping with 18 microsatellite loci and individual genotyping with a sub-panel of 9 microsatellite loci. In addition, a single marker, Hcms8a20, showed evidence of genetic linkage to an ivermectin resistance-conferring locus providing a starting point for more detailed studies of this genomic region to identify the causal mutation(s). This work presents a novel genetic approach to study anthelmintic resistance and provides a “proof-of-concept” of the use of forward genetics in an important model strongylid parasite of relevance to human hookworms. The resulting strains provide valuable resources for candidate gene studies, whole genome approaches and for further genetic analysis to identify ivermectin resistance loci

    In Vitro and In Vivo Efficacy of Monepantel (AAD 1566) against Laboratory Models of Human Intestinal Nematode Infections

    Get PDF
    Soil-transmitted helminthiases affect more than one billion people among the most vulnerable populations in developing countries. Currently, control of these infections primarily relies on chemotherapy. Only five drugs are available, all of which have been in use for decades. None of the drugs are efficacious using single doses against all soil-transmitted helminths (STH) species and show low efficacy observed against Trichuris trichiura. In addition, the limited availability of current drug treatments poses a precarious situation should drug resistance occur. Therefore, there is great interest to develop novel drugs against infections with STH. Monepantel, which belongs to a new class of veterinary anthelmintics, the amino-acetonitrile derivatives, might be a potential drug candidate in humans. It has been extensively tested against livestock nematodes, and was found highly efficacious and safe for animals. Here we describe the in vitro and in vivo effect of monepantel, on Ancylostoma ceylanicum, Necator americanus, Trichuris muris, Strongyloides ratti, and Ascaris suum, five parasite-rodent models of relevance to human STH. Since we observed that monepantel showed only high activity on one of the hookworm species and lacked activity on the other parasites tested we cannot recommend the drug as a development candidate for human soil-transmitted helminthiases

    A modified larval migration assay for detection of resistance to macrocyclic lactones in Haemonchus contortus, and drug screening with Trichostrongylidae parasites

    No full text
    We have developed a modified migration assay system in 96-well plate format which is able to detect resistance to the macrocyclic lactone group of drugs in Haemonchus contortus. The assay involves exposure of infective stage larvae to drug for a 24 h period, then counting the numbers of larvae that are able to migrate through an agar and filter mesh system over a further 48 h. The agar barrier greatly increased the sensitivity of the assay for resistance detection compared to use of filter mesh alone. The assay was able to detect the presence of 10% resistant worms in an otherwise susceptible background. However, the assay was ineffective with Trichostrongylus colubriformis and Ostertagia circumcincta indicating that its usefulness for field monitoring will be restricted to situations where H. contortus is of most significance. A small-scale drug screening exercise showed that the assay identifies some anthelmintic activities distinct from those identified by larval development assays. The assay therefore also has a potential role in drug discovery programmes in screening for new anthelmintics

    Response of Haemonchus contortus cayugensis

    No full text
    corecore