33 research outputs found

    Modélisation des pertes dans les aimants d'un multiplicateur magnétique pour l'éolien

    No full text
    International audienceModélisation des pertes dans les aimants d'un multiplicateur magnétique pour l'éolie

    Design and Optimization of Magnetic Gears with Arrangement and Mechanical Constraints for Wind Turbine Applications

    No full text
    International audienceThis article focuses on the design and optimization of magnetic and mechanical (structural) parts of magnetic gears for wind turbine applications. In particular, this design takes into account the structural aspects of magnetic gears as well as the system's mechanical constraints (deformation and stress). Geometric parameters have been optimized in order to minimize the material costs for a 3.9 MW, 15 rpm wind turbine. This optimization strategy includes both magnetostatic and mechanical stationary finite element analyses. Optimization results underscore the necessity to take mechanical constraints into account, especially for the fixed ferromagnetic pole pieces

    Exogenous Cost Allocation in Peer-to-Peer Electricity Markets

    Get PDF
    International audienceThe deployment of distributed energy resources, combined with a more proactive demand side management, is inducing a new paradigm in power system operation and electricity markets. Within a consumer-centric market framework, peer-to-peer approaches have gained substantial interest. Peer-to-peer markets rely on multi-bilateral negotiation among all agents to match supply and demand. These markets can yield a complete mapping of exchanges onto the grid, hence allowing to rethink the sharing of costs related to the use of common infrastructure and services. We propose here to attribute such costs through exogenous network charges in several alternative ways i.e. uniformly, based on the electrical distance between agents and by zones. This variety covers the main grid physical and regulatory configurations. Since attribution mechanisms are defined in an exogenous manner to affect each P2P trade, they eventually shift the market issue to cover the grid exploitation costs. It can even be used to release the stress on the grid when necessary. The interest of our approach is illustrated on a test case using the IEEE 39 bus test system, underlying the impact of attribution mechanisms on trades and grid usage

    Gestion et dimensionnement d'une flotte de véhicules électriques associée à une centrale photovoltaïque : co-optimisation stochastique et distribuée

    No full text
    Simultaneous development of flexible electricity consumers and of intermittent renewable producers calls for using their complementarities. It could foster their overall integration in power systems. For the purpose of this doctoral thesis, the collaboration between an electric vehicle fleet and a photovoltaic plant is studied. First of all, a generic problem is set up to improve the predictability of the power exchange between the power grid and the so called collaboratif system. It should therefore fulfill a commitment profile constraint. The intraday management of this system consists in an optimisation problem which objective is to mitigate the production forecast errors by charging power flexibility. This is a multitime step problem, because of the battery intertia. The random availibility of vehicles and the forecast errors also make it stochastic. Finally there is a huge number of variables as it is spread other an entiere fleet.Upstream of the problem resolution, the modeling of the dynamic behaviour and of the aging of Lithium Ion batteries is discussed. It results in a range of compromises between precision, impact on the final decision and computational cost. Furthermore, a hidden Markov model is proposed and developped so as to handle temporal structures of the forecast error of the photovoltaic production. This analysis is based on production data of a real plant and on associated forecasts.An electric vehicle fleet is considered as an equivalent agregated battery. Its optimal charging power is sorted out using stochastic dynamic programming. The sensitivity of the resulting management strategies is assessed against the models which describe the production forecast error or battery behaviour. The battery aging is rendered by several models which we discuss the consequences over the optimal sizing of an electric vehicle fleet regarding to the plant power.Then the optimal charing power for each one of the vehicles among a fleet is deduced using a sharing problem. The resolution is carried out using distributed optimisation --- Alternating Direction Method of Multipliers --- and dynamic programming. A specific attention is devoted to the individual mobility priorities of the vehicles users. The vehicle charging power is thus differenticiated according to each one preferences. We also investigate a situation where information exchanges are limited. The optimal sizing of an electric vehicle fleet associated with a photovoltaic plant is finaly considered under several possibilities of economic model. The coupling between sizing and daily management is tackled thanks to a co-optimization.La généralisation concomitante de consommateurs d'électricité flexibles et de producteurs imparfaitement contrôlables invite à utiliser les complémentarités de ces acteurs afin d'améliorer leur intégration dans les systèmes d'énergie. Dans le cadre de ces travaux de doctorat, la collaboration entre une flotte de véhicules électriques et une centrale photovoltaïque est étudiée. Un problème générique est tout d'abord défini afin d'augmenter la prévisibilité des échanges entre un réseau électrique et le système collaboratif ainsi créé qui devra respecter un profil d'engagement de puissance échangée. La gestion de ce système est traduite en un problème d'optimisation dans lequel on cherche à compenser les erreurs de prévision de la production photovoltaïque à l'aide de la flexibilité des recharges. Ce problème est multi-temporel du fait de la présence de batteries, stochastique à cause de la disponibilité des véhicules et des erreurs de prévision, et enfin de grande dimension puisqu'à l'échelle d'une flotte entière.Pour le résoudre, la modélisation du comportement et du vieillissement des batteries Li-ion est discutée afin d'établir des compromis entre justesse du modèle, impact sur la décision finale et coût de calcul. Par ailleurs, un modèle de Markov caché original est spécifiquement développé afin de capturer les structures temporelles de l'erreur de prévision de production photovoltaïque. Cette étude est fondée sur des données réelles de production d'une centrale et des données de prévision correspondantes.Le problème de recharge optimale d'une flotte de véhicules agrégée en une batterie équivalente est résolu par la méthode de la programmation dynamique stochastique. La sensibilité des lois de gestion obtenues est discutée vis à vis des modèles utilisés pour décrire l'erreur de prévision ou le comportement des batteries. Le vieillissement des batteries est traduit par plusieurs modèles, dont on examine les conséquences sur le dimensionnement optimal de la flotte de véhicules par rapport à la puissance crête de la centrale photovoltaïque.Enfin la puissance de recharge optimale pour chacun des véhicules de la flotte est déduite à l'aide d'un problème de partage qui est résolu par optimisation distribuée --- Alternating Direction Method of Multipliers --- et programmation dynamique. Une attention particulière est prêtée à la manière dont les préférences individuelles de chaque utilisateur peuvent être prises en compte au sein d'une flotte. Le cas d'une limitation des échanges d'information possibles entre les véhicules est investigué. Le dimensionnement optimal entre une flotte et une centrale photovoltaïque est finalement analysé pour plusieurs modèles économiques envisageables. L'interaction entre dimensionnement et gestion est traitée à l'aide d'une co-optimisation

    Co-optimisation d'un système collaboratif : centrale photovoltaïque et flotte de véhicules électriques

    No full text
    International audienceLes systèmes d'énergie voient l'émergence de nouveaux acteurs qui remettent en cause leur gestion. La multiplication des centrales renouvelables dont la production est fluctuante et peu prévisible nécessite de les associer à des modes de consommation ou de stockage également flexibles. Cette présentation se focalise sur l'association d'une centrale photovoltaïque avec une flotte de véhicules électriques, afin de tirer partie des complémentarités entre ces agents. Les différents aspects d'une telle collaboration seront donc abordés. La modélisation du comportement stochastique de la production PV sera tout d'abord présentée sous la forme d'une chaîne de Markov cachée. L'optimisation de la gestion d'un tel système collaboratif sera ensuite décrite sous la forme d'un problème de partage et en utilisant la programmation dynamique stochastique. Enfin le dimensionnement d'un tel système sera discuté en fonction de quelques modèles économiques possibles

    Management and Sizing of an Electric Vehicle Fleet Associated with a Photovoltaic Plant : Stochastic and Distributed Co-optimizationStationary Valorisation of Electric Vehicle Batteries taking into account their aging and availibility

    No full text
    La généralisation concomitante de consommateurs d'électricité flexibles et de producteurs imparfaitement contrôlables invite à utiliser les complémentarités de ces acteurs afin d'améliorer leur intégration dans les systèmes d'énergie. Dans le cadre de ces travaux de doctorat, la collaboration entre une flotte de véhicules électriques et une centrale photovoltaïque est étudiée. Un problème générique est tout d'abord défini afin d'augmenter la prévisibilité des échanges entre un réseau électrique et le système collaboratif ainsi créé qui devra respecter un profil d'engagement de puissance échangée. La gestion de ce système est traduite en un problème d'optimisation dans lequel on cherche à compenser les erreurs de prévision de la production photovoltaïque à l'aide de la flexibilité des recharges. Ce problème est multi-temporel du fait de la présence de batteries, stochastique à cause de la disponibilité des véhicules et des erreurs de prévision, et enfin de grande dimension puisqu'à l'échelle d'une flotte entière.Pour le résoudre, la modélisation du comportement et du vieillissement des batteries Li-ion est discutée afin d'établir des compromis entre justesse du modèle, impact sur la décision finale et coût de calcul. Par ailleurs, un modèle de Markov caché original est spécifiquement développé afin de capturer les structures temporelles de l'erreur de prévision de production photovoltaïque. Cette étude est fondée sur des données réelles de production d'une centrale et des données de prévision correspondantes.Le problème de recharge optimale d'une flotte de véhicules agrégée en une batterie équivalente est résolu par la méthode de la programmation dynamique stochastique. La sensibilité des lois de gestion obtenues est discutée vis à vis des modèles utilisés pour décrire l'erreur de prévision ou le comportement des batteries. Le vieillissement des batteries est traduit par plusieurs modèles, dont on examine les conséquences sur le dimensionnement optimal de la flotte de véhicules par rapport à la puissance crête de la centrale photovoltaïque.Enfin la puissance de recharge optimale pour chacun des véhicules de la flotte est déduite à l'aide d'un problème de partage qui est résolu par optimisation distribuée --- Alternating Direction Method of Multipliers --- et programmation dynamique. Une attention particulière est prêtée à la manière dont les préférences individuelles de chaque utilisateur peuvent être prises en compte au sein d'une flotte. Le cas d'une limitation des échanges d'information possibles entre les véhicules est investigué. Le dimensionnement optimal entre une flotte et une centrale photovoltaïque est finalement analysé pour plusieurs modèles économiques envisageables. L'interaction entre dimensionnement et gestion est traitée à l'aide d'une co-optimisation.Simultaneous development of flexible electricity consumers and of intermittent renewable producers calls for using their complementarities. It could foster their overall integration in power systems. For the purpose of this doctoral thesis, the collaboration between an electric vehicle fleet and a photovoltaic plant is studied. First of all, a generic problem is set up to improve the predictability of the power exchange between the power grid and the so called collaboratif system. It should therefore fulfill a commitment profile constraint. The intraday management of this system consists in an optimisation problem which objective is to mitigate the production forecast errors by charging power flexibility. This is a multitime step problem, because of the battery intertia. The random availibility of vehicles and the forecast errors also make it stochastic. Finally there is a huge number of variables as it is spread other an entiere fleet.Upstream of the problem resolution, the modeling of the dynamic behaviour and of the aging of Lithium Ion batteries is discussed. It results in a range of compromises between precision, impact on the final decision and computational cost. Furthermore, a hidden Markov model is proposed and developped so as to handle temporal structures of the forecast error of the photovoltaic production. This analysis is based on production data of a real plant and on associated forecasts.An electric vehicle fleet is considered as an equivalent agregated battery. Its optimal charging power is sorted out using stochastic dynamic programming. The sensitivity of the resulting management strategies is assessed against the models which describe the production forecast error or battery behaviour. The battery aging is rendered by several models which we discuss the consequences over the optimal sizing of an electric vehicle fleet regarding to the plant power.Then the optimal charing power for each one of the vehicles among a fleet is deduced using a sharing problem. The resolution is carried out using distributed optimisation --- Alternating Direction Method of Multipliers --- and dynamic programming. A specific attention is devoted to the individual mobility priorities of the vehicles users. The vehicle charging power is thus differenticiated according to each one preferences. We also investigate a situation where information exchanges are limited. The optimal sizing of an electric vehicle fleet associated with a photovoltaic plant is finaly considered under several possibilities of economic model. The coupling between sizing and daily management is tackled thanks to a co-optimization

    Gestion et dimensionnement d'une flotte de véhicules électriques associée à une centrale photovoltaïque : co-optimisation stochastique et distribuée

    No full text
    Simultaneous development of flexible electricity consumers and of intermittent renewable producers calls for using their complementarities. It could foster their overall integration in power systems. For the purpose of this doctoral thesis, the collaboration between an electric vehicle fleet and a photovoltaic plant is studied. First of all, a generic problem is set up to improve the predictability of the power exchange between the power grid and the so called collaboratif system. It should therefore fulfill a commitment profile constraint. The intraday management of this system consists in an optimisation problem which objective is to mitigate the production forecast errors by charging power flexibility. This is a multitime step problem, because of the battery intertia. The random availibility of vehicles and the forecast errors also make it stochastic. Finally there is a huge number of variables as it is spread other an entiere fleet.Upstream of the problem resolution, the modeling of the dynamic behaviour and of the aging of Lithium Ion batteries is discussed. It results in a range of compromises between precision, impact on the final decision and computational cost. Furthermore, a hidden Markov model is proposed and developped so as to handle temporal structures of the forecast error of the photovoltaic production. This analysis is based on production data of a real plant and on associated forecasts.An electric vehicle fleet is considered as an equivalent agregated battery. Its optimal charging power is sorted out using stochastic dynamic programming. The sensitivity of the resulting management strategies is assessed against the models which describe the production forecast error or battery behaviour. The battery aging is rendered by several models which we discuss the consequences over the optimal sizing of an electric vehicle fleet regarding to the plant power.Then the optimal charing power for each one of the vehicles among a fleet is deduced using a sharing problem. The resolution is carried out using distributed optimisation --- Alternating Direction Method of Multipliers --- and dynamic programming. A specific attention is devoted to the individual mobility priorities of the vehicles users. The vehicle charging power is thus differenticiated according to each one preferences. We also investigate a situation where information exchanges are limited. The optimal sizing of an electric vehicle fleet associated with a photovoltaic plant is finaly considered under several possibilities of economic model. The coupling between sizing and daily management is tackled thanks to a co-optimization.La généralisation concomitante de consommateurs d'électricité flexibles et de producteurs imparfaitement contrôlables invite à utiliser les complémentarités de ces acteurs afin d'améliorer leur intégration dans les systèmes d'énergie. Dans le cadre de ces travaux de doctorat, la collaboration entre une flotte de véhicules électriques et une centrale photovoltaïque est étudiée. Un problème générique est tout d'abord défini afin d'augmenter la prévisibilité des échanges entre un réseau électrique et le système collaboratif ainsi créé qui devra respecter un profil d'engagement de puissance échangée. La gestion de ce système est traduite en un problème d'optimisation dans lequel on cherche à compenser les erreurs de prévision de la production photovoltaïque à l'aide de la flexibilité des recharges. Ce problème est multi-temporel du fait de la présence de batteries, stochastique à cause de la disponibilité des véhicules et des erreurs de prévision, et enfin de grande dimension puisqu'à l'échelle d'une flotte entière.Pour le résoudre, la modélisation du comportement et du vieillissement des batteries Li-ion est discutée afin d'établir des compromis entre justesse du modèle, impact sur la décision finale et coût de calcul. Par ailleurs, un modèle de Markov caché original est spécifiquement développé afin de capturer les structures temporelles de l'erreur de prévision de production photovoltaïque. Cette étude est fondée sur des données réelles de production d'une centrale et des données de prévision correspondantes.Le problème de recharge optimale d'une flotte de véhicules agrégée en une batterie équivalente est résolu par la méthode de la programmation dynamique stochastique. La sensibilité des lois de gestion obtenues est discutée vis à vis des modèles utilisés pour décrire l'erreur de prévision ou le comportement des batteries. Le vieillissement des batteries est traduit par plusieurs modèles, dont on examine les conséquences sur le dimensionnement optimal de la flotte de véhicules par rapport à la puissance crête de la centrale photovoltaïque.Enfin la puissance de recharge optimale pour chacun des véhicules de la flotte est déduite à l'aide d'un problème de partage qui est résolu par optimisation distribuée --- Alternating Direction Method of Multipliers --- et programmation dynamique. Une attention particulière est prêtée à la manière dont les préférences individuelles de chaque utilisateur peuvent être prises en compte au sein d'une flotte. Le cas d'une limitation des échanges d'information possibles entre les véhicules est investigué. Le dimensionnement optimal entre une flotte et une centrale photovoltaïque est finalement analysé pour plusieurs modèles économiques envisageables. L'interaction entre dimensionnement et gestion est traitée à l'aide d'une co-optimisation

    Modeling of the wind power forecast errors and associated optimal storage strategy

    No full text
    Production forecast errors are the main hurdle to integrate variable renewable energies into electrical power systems. Regardless of the technique, these errors are inherent in the forecast exercise, although their magnitude significantly vary depending on the method and the horizon. As power systems have to balance out these errors, their dynamic and stochastic modeling is valuable for the real time operation. This study proposes a Markov Switching Auto Regressive-MS-AR-approach. The strength of such a model is to be able to identify weather types according to the reliability of the forecast. These types are captured with a hidden state whose evolution is controlled by a transition matrix. The autocorrelation and variance parameters of the AR models are then different from one state to another. After having validated its statistical relevance, this model is used to solve the problem of the optimal management of a storage associated with a wind power plant when this virtual power plant must respect a production commitment. The resolution is carried out by stochastic dynamic programming while comparing the proposed MS-AR with several other models of forecast errors. This illustrative problem highlights the improvements made by a fine modeling of forecast errors

    Markov switching autoregressive modeling of wind power forecast errors

    No full text
    International audienceForecast errors constitute the main hurdle to integrating variable renewable energies into electrical power systems. Errors are inherent to forecasting, although their magnitude varies significantly with respect to both the method adopted and the time horizon. Their dynamic and stochastic modeling is mandatory for power systems to efficiently balance out these errors. A Markov Switching Autoregressive-MS-AR-approach is proposed herein for wind power forecast errors. This particular model is able to identify weather regimes according to the forecast reliability. Such regimes are controlled by a Markov chain whose state-not directly observable-determines the AR model parameters. The statistical features of the data artificially generated by this model are very similar to those of the actual forecast error. This model is used to solve the optimal management of a storage associated with a wind farm. The resolution is performed by means of stochastic dynamic programming while comparing the proposed MS-AR approach with several other models. In this illustrative problem, a 15% reduction in operating costs is derived from a fine model of forecast errors

    Modeling of the wind power forecast errors and associated optimal storage strategy

    Get PDF
    Production forecast errors are the main hurdle to integrate variable renewable energies into electrical power systems. Regardless of the technique, these errors are inherent in the forecast exercise, although their magnitude significantly vary depending on the method and the horizon. As power systems have to balance out these errors, their dynamic and stochastic modeling is valuable for the real time operation. This study proposes a Markov Switching Auto Regressive-MS-AR-approach. The strength of such a model is to be able to identify weather types according to the reliability of the forecast. These types are captured with a hidden state whose evolution is controlled by a transition matrix. The autocorrelation and variance parameters of the AR models are then different from one state to another. After having validated its statistical relevance, this model is used to solve the problem of the optimal management of a storage associated with a wind power plant when this virtual power plant must respect a production commitment. The resolution is carried out by stochastic dynamic programming while comparing the proposed MS-AR with several other models of forecast errors. This illustrative problem highlights the improvements made by a fine modeling of forecast errors
    corecore