936 research outputs found

    CompCodeVet: A Compiler-guided Validation and Enhancement Approach for Code Dataset

    Full text link
    Large language models (LLMs) have become increasingly prominent in academia and industry due to their remarkable performance in diverse applications. As these models evolve with increasing parameters, they excel in tasks like sentiment analysis and machine translation. However, even models with billions of parameters face challenges in tasks demanding multi-step reasoning. Code generation and comprehension, especially in C and C++, emerge as significant challenges. While LLMs trained on code datasets demonstrate competence in many tasks, they struggle with rectifying non-compilable C and C++ code. Our investigation attributes this subpar performance to two primary factors: the quality of the training dataset and the inherent complexity of the problem which demands intricate reasoning. Existing "Chain of Thought" (CoT) prompting techniques aim to enhance multi-step reasoning. This approach, however, retains the limitations associated with the latent drawbacks of LLMs. In this work, we propose CompCodeVet, a compiler-guided CoT approach to produce compilable code from non-compilable ones. Diverging from the conventional approach of utilizing larger LLMs, we employ compilers as a teacher to establish a more robust zero-shot thought process. The evaluation of CompCodeVet on two open-source code datasets shows that CompCodeVet has the ability to improve the training dataset quality for LLMs

    Obscured Starburst Activity in High Redshift Clusters and Groups

    Full text link
    Using Spitzer-MIPS 24um imaging and Keck spectroscopy we examine the nature of the obscured star forming population in three clusters and three groups at z~0.9. These six systems are components of the Cl1604 supercluster, the largest structure imaged by Spitzer at redshifts near unity. We find that the average density of 24um-detected galaxies within the Cl1604 clusters is nearly twice that of the surrounding field and that this overdensity scales with the cluster's dynamical state. The 24um-bright members often appear optically unremarkable and exhibit only moderate [OII] line emission due to severe obscuration. Their spatial distribution suggests they are an infalling population, but an examination of their spectral properties, morphologies and optical colors indicate they are not simply analogs of the field population that have yet to be quenched. Using stacked composite spectra, we find the 24um-detected cluster and group galaxies exhibit elevated levels of Balmer absorption compared to galaxies undergoing normal, continuous star formation. A similar excess is not observed in field galaxies with equivalent infrared luminosities, indicating a greater fraction of the detected cluster and group members have experienced a burst of star formation in the recent past compared to their counterparts in the field. Our results suggest that gas-rich galaxies at high redshift experience a temporary increase in their star formation activity as they assemble into denser environments. Using HST-ACS imaging we find that disturbed morphologies are common among the 24um-detected cluster and group members and become more prevalent in regions of higher galaxy density. We conclude that mergers are the dominant triggering mechanism responsible for the enhanced star formation found in the Cl1604 groups, while a mix of harassment and mergers are likely driving the activity of the cluster galaxies.Comment: 18 pages, 19 figures, submitted to Ap

    Glutathione is key to the synergistic enhancement of doxorubicin and etoposide by polyphenols in leukaemia cell lines

    Get PDF
    Recently published in Nature: Cell Death and Discovery, Mahbub et al.1 have demonstrated that polyphenols can synergistically enhance the action of the topoisomerase II inhibitors: doxorubicin and etoposide in leukaemia cells. A reduction of glutathione (GSH) was strongly associated with sensitising cells to the pro-apoptotic effects of polyphenols when used in combination with doxorubicin or etoposide. Importantly, when polyphenols and topoisomerase II inhibitors were combined, it was possible to induce a synergistic decrease in cell proliferation (measured as ATP levels), cell-cycle arrest and induction of apoptosis in leukaemia cell lines

    An ALMA Survey of H₂CO in Protoplanetary Disks

    Get PDF
    H₂CO is one of the most abundant organic molecules in protoplanetary disks and can serve as a precursor to more complex organic chemistry. We present an Atacama Large Millimeter/submillimeter Array survey of H₂CO toward 15 disks covering a range of stellar spectral types, stellar ages, and dust continuum morphologies. H₂CO is detected toward 13 disks and tentatively detected toward a fourteenth. We find both centrally peaked and centrally depressed emission morphologies, and half of the disks show ring-like structures at or beyond expected CO snowline locations. Together these morphologies suggest that H₂CO in disks is commonly produced through both gas-phase and CO-ice-regulated grain-surface chemistry. We extract disk-averaged and azimuthally-averaged H₂CO excitation temperatures and column densities for four disks with multiple H₂CO line detections. The temperatures are between 20–50 K, with the exception of colder temperatures in the DM Tau disk. These temperatures suggest that H₂CO emission in disks generally emerges from the warm molecular layer, with some contributions from the colder midplane. Applying the same H₂CO excitation temperatures to all disks in the survey, we find that H₂CO column densities span almost three orders of magnitude (~5 × 10¹¹–5 × 10¹⁴ cm⁻²). The column densities appear uncorrelated with disk size and stellar age, but Herbig Ae disks may have less H₂CO compared to T Tauri disks, possibly because of less CO freeze-out. More H₂CO observations toward Herbig Ae disks are needed to confirm this tentative trend, and to better constrain under which disk conditions H₂CO and other oxygen-bearing organics efficiently form during planet formation

    PESSTO monitoring of SN 2012hn: further heterogeneity among faint type I supernovae

    Get PDF
    We present optical and infrared monitoring data of SN 2012hn collected by the Public ESO Spectroscopic Survey for Transient Objects (PESSTO). We show that SN 2012hn has a faint peak magnitude (MR ~ -15.7) and shows no hydrogen and no clear evidence for helium in its spectral evolution. Instead, we detect prominent Ca II lines at all epochs, which relates this transient to previously described 'Ca-rich' or 'gap' transients. However, the photospheric spectra (from -3 to +32 d with respect to peak) of SN 2012hn show a series of absorption lines which are unique, and a red continuum that is likely intrinsic rather than due to extinction. Lines of Ti II and Cr II are visible. This may be a temperature effect, which could also explain the red photospheric colour. A nebular spectrum at +150d shows prominent CaII, OI, CI and possibly MgI lines which appear similar in strength to those displayed by core-collapse SNe. To add to the puzzle, SN 2012hn is located at a projected distance of 6 kpc from an E/S0 host and is not close to any obvious starforming region. Overall SN 2012hn resembles a group of faint H-poor SNe that have been discovered recently and for which a convincing and consistent physical explanation is still missing. They all appear to explode preferentially in remote locations offset from a massive host galaxy with deep limits on any dwarf host galaxies, favouring old progenitor systems. SN 2012hn adds heterogeneity to this sample of objects. We discuss potential explosion channels including He-shell detonations and double detonations of white dwarfs as well as peculiar core-collapse SNe.Comment: 14 pages, 14 figures, accepted to MNRAS on 14/10/201

    Hidden Starbursts and Active Galactic Nuclei at 0 \u3c \u3cem\u3ez\u3c/em\u3e \u3c 4 from the \u3cem\u3eHerschel\u3c/em\u3e-VVDS-CFHTLS-D1 Field: Inferences on Coevolution and Feedback

    Get PDF
    We investigate of the properties of ~2000 Herschel/SPIRE far-infrared-selected galaxies from 0 \u3c z \u3c 4 in the CFHTLS-D1 field. Using a combination of extensive spectroscopy from the VVDS and ORELSE surveys, deep multiwavelength imaging from CFHT, VLA, Spitzer, XMM-Newton, and Herschel, and well-calibrated spectral energy distribution fitting, Herschel-bright galaxies are compared to optically-selected galaxies at a variety of redshifts. Herschel-selected galaxies are observed to span a range of stellar masses, colors, and absolute magnitudes equivalent to galaxies undetected in SPIRE. Though many Herschel galaxies appear to be in transition, such galaxies are largely consistent with normal star-forming galaxies when rest-frame colors are utilized. The nature of the star-forming “main sequence” is studied and we warn against adopting this framework unless the main sequence is determined precisely. Herschel galaxies at different total infrared luminosities (LTIR) are compared. Bluer optical colors, larger nebular extinctions, and larger contributions from younger stellar populations are observed for galaxies with larger LTIR, suggesting that low-LTIR galaxies are undergoing rejuvenated starbursts while galaxies with higher LTIR are forming a larger percentage of their stellar mass. A variety of methods are used to select powerful active galactic nuclei (AGN). Galaxies hosting all types of AGN are observed to be undergoing starbursts more commonly and vigorously than a matched sample of galaxies without powerful AGN and, additionally, the fraction of galaxies with an AGN increases with increasing star formation rate at all redshifts. At all redshifts (0 \u3c z \u3c 4) the most prodigious star-forming galaxies are found to contain the highest fraction of powerful AGN. For redshift bins that allow a comparison (z \u3e 0.5), the highest LTIR galaxies in a given redshift bin are unobserved by SPIRE at subsequently lower redshifts, a trend linked to downsizing. In conjunction with other results, this evidence is used to argue for prevalent AGN-driven quenching in starburst galaxies across cosmic time
    corecore