3 research outputs found
Role du confinement sur l'endocytose dépendante de la clathrine
Clathrin-mediated endocytosis (CME) is the major route of endocytosis for many cargos in eukaryotic cells. Endocytosis takes place at clathrin-coated pits (CCPs), small assemblies of clathrin and clathrin adaptors randomly distributed at the plasma membrane. Clathrin polymerization induces the progressive bending of the plasma membrane resulting in the formation of a vesicle budding off into the cytosol. CME is a highly dynamic process with an average lifetime of CCPs in the order of 30 seconds. In this manner, CME fulfills a range of different functions and enables cells to regulate the surface expression of proteins, to sample the cellâs environment for growth and guidance cues, to control the activation of signaling pathways and to turn over membrane components by sending these components for degradation in the endo-lysosomal pathway. A deregulation of the endocytic pathways was previously shown to be involve in cancer. These modifications can affect CME directly by modifying its actors, or indirectly with mutations on receptors or cargoes undertaken by CME. Tumor progression is dependent of several factors, the first one involving the accumulation of mutations which results in modifications in the cells themselves or on their surrounding environment by changing its biochemical and physical properties, leading to the formation of the tumor niche. These changes reciprocally foster cancer progression. During tumor growth, fibroblasts will be recruited around tumor cells, leading to the remodeling of the microenvironment and to an increase of rigidity nearby the tumor. This stiffness is sensed by the cells and send signals for proliferation and migration as a result. Stiffness sensing engages mainly integrins at the cell surface which will aggregate and initiate signaling cascades accountable for these responses. Integrins are capable of clustering into two types of structures: focal adhesions and clathrin-coated structures (CCSs). Regarding CCSs, it was shown previously that high stiffness strengthen the interaction between integrins and the substrate, hence preventing the budding off of the vesicle, and this is referred to as âfrustrated endocytosisâ. This holding of CCSs at the cell surface promotes a sustained signaling at the plasma membrane instead of a signal termination after internalization and further degradation in lysosomes. My PhD project relied on these previous findings, with a particular focus on another mechanical alteration observed in tumors, the confinement. Indeed, during the uncontrolled proliferation of cancer cells in a spatially restricted area, cells become subjected to compressive forces. The results I obtained indicate that confinement leads to frustrated endocytosis and hence to sustained signaling from the plasma membrane. In addition, compression also leads to HB-EGF shedding at the cell surface, and the resulting EGF product activate the EGFR in a paracrine manner, thus leading to the activation of the MAP kinase Erk signaling pathway. Indeed, both the absence of EGFR ligands in the medium and the inhibition of the shedding demonstrate the necessity of this mechanism in EGFR activation. To sum up, confinement induces the shedding of the EGFR pro-ligand HB-EGF necessary to EGFR activation in these conditions. Simultaneously, endocytosis is delayed and frustrated endocytosis leads to sustained signaling at the cell surface. Together, these events cooperate to strongly activate the Erk pathway. These findings highlight the interplay between the physical feature of the tumor environment and signaling pathways known to govern tumor growth.Lâendocytose dĂ©pendante de la clathrine (EDC) est la principale voie dâinternalisation des rĂ©cepteurs de surface et de leurs ligands. Lâinternalisation se fait suite Ă lâinvagination de la membrane plasmique vers lâintĂ©rieur de la cellule suite Ă la formation, dans un premier temps, de puits recouverts de clathrine (PRCs) qui bourgeonnent ensuite en vĂ©sicules recouvertes de clathrine dans le cytosol. LâEDC est un processus trĂšs dynamique qui a lieu en lâespace de 30 sec-1mn. Elle est impliquĂ©e dans de multiples fonctions et permet ainsi Ă la cellule de rĂ©guler lâexpression de ses protĂ©ines en surface, de rĂ©pondre aux signaux de prolifĂ©ration ou migration envoyĂ©s par lâenvironnement immĂ©diat via lâactivation de voies de signalisation spĂ©cifiques ou encore de rĂ©guler le renouvellement des composants de la membrane plasmique. De par son importance, des dĂ©rĂ©gulations de lâendocytose dĂ©pendante de la clathrine ont dĂ©jĂ Ă©tĂ© observĂ©es dans les cancers. Ces modifications peuvent impliquer directement lâEDC en modifiant ses composants ou indirectement lors dâaltĂ©rations de rĂ©cepteurs rĂ©gulĂ©s par celle-ci. La progression tumorale est elle-mĂȘme rĂ©gulĂ©e par de multiples facteurs, notamment lâaccumulation de mutations qui ont des consĂ©quences sur les cellules cancĂ©reuses elle-mĂȘme ou bien sur lâenvironnement immĂ©diat, formant ainsi la « niche tumorale ». Ces changements agissent rĂ©ciproquement sur la progression tumorale afin de lâamplifier. Lors de la croissance tumorale, les cellules cancĂ©reuses recrutent des fibroblastes qui vont participer au remodelage et Ă lâaugmentation de la rigiditĂ© autour de la tumeur. La rigiditĂ© de la matrice extracellulaire est dĂ©tectĂ©e par les cellules ce qui envoie des signaux dĂ©clencheurs de prolifĂ©ration et de migration en consĂ©quence. Cette dĂ©tection passe essentiellement par les intĂ©grines Ă la surface membranaire qui vont sâagrĂ©ger et induire des cascades de signalisation impliquĂ©es dans ces rĂ©ponses. Ces intĂ©grines peuvent se regrouper dans deux types de structures, les adhĂ©sions focales et les structures recouvertes de clathrine. En ce qui concerne ces derniĂšres, il a Ă©tĂ© dĂ©montrĂ© prĂ©cĂ©demment que la rigiditĂ© du substrat augmente sa force dâinteraction avec les intĂ©grines, et empĂȘche ainsi lâinternalisation des vĂ©sicules recouvertes de clathrine, on parle alors dâ « endocytose frustrĂ©e ». Cette rĂ©tention des structures recouvertes de clathrine Ă la surface provoque une signalisation soutenue Ă la surface au lieu de lâarrĂȘter par dĂ©gradation ultĂ©rieure des rĂ©cepteurs dans les lysosomes. Le laboratoire a dĂ©montrĂ© que les structures de clathrine frustrĂ©es capturent ainsi diffĂ©rent rĂ©cepteurs conduisant Ă une signalisation accrue dans la voie de la MAP Kinase Erk. Mon projet de thĂšse repose sur ces observations en sâintĂ©ressant plus particuliĂšrement au rĂŽle dâune autre modification induite par la croissance tumorale, le confinement. En effet, en se multipliant de maniĂšre incontrĂŽlĂ©e dans un environnement spatialement restreint, les cellules tumorales se retrouvent soumises Ă des forces de compression. Les rĂ©sultats mis en Ă©vidence au cours de ma thĂšse ont montrĂ© que le confinement provoque, comme la rigiditĂ©, une frustration des structures de clathrine qui ne sont donc plus capables de soutenir lâendocytose des rĂ©cepteurs. De plus, la compression cellulaire induit le clivage dâun pro-ligand de lâEGFR, le HB-EGF, ce qui conduit Ă lâactivation paracrine de lâEGFR et Ă lâactivation de la voie Erk. En effet, lâabsence de facteurs de croissance dans le milieu ainsi que lâinhibition de ce clivage dĂ©montrent la nĂ©cessitĂ© de la mise en place de ce mĂ©canisme. En rĂ©sumĂ©, le confinement induit le clivage du pro-ligand HB-EGF, qui Ă son tour va activer le rĂ©cepteur Ă lâEGF. En parallĂšle, lâendocytose est ralentie et provoque une signalisation accrue Ă la membrane. Ces deux Ă©vĂšnements coopĂšrent pour mener Ă une trĂšs forte activation de la voie Erk
The mechanosensitive TRPV2 calcium channel promotes human melanoma invasiveness and metastatic potential
Melanoma is a highly aggressive cancer endowed with a unique capacity of rapidly metastasizing, which is fundamentally driven by aberrant cell motility behaviors. Discovering "migrastatics" targets, specifically controlling invasion and dissemination of melanoma cells during metastasis, is therefore of primary importance. Here, we uncover the prominent expression of the plasma membrane TRPV2 calcium channel as a distinctive feature of melanoma tumors, directly related to melanoma metastatic dissemination. In vitro as well as in vivo, TRPV2 activity is sufficient to confer both migratory and invasive potentials, while conversely TRPV2 silencing in highly metastatic melanoma cells prevents aggressive behavior. In invasive melanoma cells, TRPV2 channel localizes at the leading edge, in dynamic nascent adhesions, and regulates calcium-mediated activation of calpain and the ensuing cleavage of the adhesive protein talin, along with F-actin organization. In human melanoma tissues, TRPV2 overexpression correlates with advanced malignancy and poor prognosis, evoking a biomarker potential. Hence, by regulating adhesion and motility, the mechanosensitive TRPV2 channel controls melanoma cell invasiveness, highlighting a new therapeutic option for migrastatics in the treatment of metastatic melanoma
The mechanosensitive TRPV2 calcium channel controls human melanoma invasiveness and metastatic potential
ABSTRACT Discovery of therapeutic targets against metastasis is of primary importance since being the main cause of cancer-related death. Melanoma is a highly aggressive cancer endowed with a unique capacity of rapidly metastasizing. Deregulation of calcium homeostasis has been involved in numerous cellular metastatic behaviors, although the molecular determinants supporting these processes often remain unclear. Here, we evidenced a prominent expression of the plasma membrane TRPV2 calcium channel as a distinctive feature of melanoma tumors, directly related to melanoma metastatic progression and dissemination. In vitro as well as in vivo , TRPV2 activity was sufficient to confer both migratory and invasive phenotypes to non-invasive melanoma cells, while conversely upon TRPV2 silencing, highly metastatic melanoma cells failed to retain their malignant behaviors. We established a model whereupon activation of the mechanosensitive TRPV2 channel, localized in highly dynamic nascent adhesion clusters, directly regulates calpain-dependent cleavage of the adhesive protein talin together with F-actin network. By operating at the crossroad of the tumor microenvironment and the intracellular machinery, mechanosensitive TRPV2 channel controls melanoma cells aggressiveness. Finally in human melanoma tumor samples, TRPV2 overexpression represents a molecular marker of advanced malignancy and bad prognosis, highlighting a new therapeutic option for migrastatics in the treatment of metastatic melanoma. Significance One essential feature of metastatic cells is enhanced motility and invasiveness. This study evidences TRPV2 channel control over metastatic melanoma invasiveness, highlights new migration regulatory mechanisms, and reveals this channel as a biomarker and migrastatic target for the treatment of advanced melanoma