51 research outputs found

    Learning invariant features through topographic filter maps

    Get PDF

    Reading handwritten digits: a ZIP code recognition system

    Get PDF
    A neural network algorithm-based system that reads handwritten ZIP codes appearing on real US mail is described. The system uses a recognition-based segmenter, that is a hybrid of connected-components analysis (CCA), vertical cuts, and a neural network recognizer. Connected components that are single digits are handled by CCA. CCs that are combined or dissected digits are handled by the vertical-cut segmenter. The four main stages of processing are preprocessing, in which noise is removed and the digits are deslanted, CCA segmentation and recognition, vertical-cut-point estimation and segmentation, and directly lookup. The system was trained and tested on approximately 10000 images, five- and nine-digit ZIP code fields taken from real mail

    The time dimension of neural network models

    Get PDF
    This review attempts to provide an insightful perspective on the role of time within neural network models and the use of neural networks for problems involving time. The most commonly used neural network models are defined and explained giving mention to important technical issues but avoiding great detail. The relationship between recurrent and feedforward networks is emphasised, along with the distinctions in their practical and theoretical abilities. Some practical examples are discussed to illustrate the major issues concerning the application of neural networks to data with various types of temporal structure, and finally some highlights of current research on the more difficult types of problems are presented

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Modeles connexionnistes de l'apprentissage

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore