203 research outputs found
Formation of Three-Dimensional Structures in the Hemisphere-Cylinder
This paper presents an investigation of the origin and evolution of the complex flow pattern on a hemisphere-cylinder at separated flow conditions. Three-dimensional numerical simulations have been performed for a range of Reynolds numbers and angles of attack. A critical point theory has been used to analyze the flowfields. This has yielded, for the first time for this geometry, a bifurcation diagram that classifies the different flow topology regimes as a function of the Reynolds number and angle of attack. A complete characterization of the origin and evolution of the complex structural patterns of this geometry is documented. For the higher Reynolds number and angle of attack, a structurally stable topology is found that is associated with the pattern of the horn vortices, usually found on this geometry in a range from low to high Reynolds numbers and from incompressible to compressible regimes. Surface critical points and surface and volume streamlines describe the main flow structures and their strong dependence with the flow conditions
Dynamic Mode Decomposition of merging wind turbine wakes
The design and operation of wind farms is significantly affected by the impact that upstream turbine wakes have on the power production and fatigue loading of subsequent turbines; often called the wake effect. In this work, two types of flows are considered: the wake of a single turbine with a laminar inflow and the combined wake of two turbines operating in-line where the upstream wake results in an unsteady inflow for the downstream turbine. Those two scenarios are simulated using large eddy simulation (LES) and the actuator line method (ALM). The spatio-temporal velocity fields are analyzed by means of high order dynamic mode decomposition (HODMD), a well established variant of the DMD. The results show that most of the higher frequencies characterizing the laminar case are instead dominated by the lower frequency modes in the combined wake. This suggests that structures emerging from the blade rotations in a wind turbine wake may be less significant for describing the wake dynamics when the rotor is operating in the unsteady wake of an upstream rotor
Neighborly relations: cadherins and mechanotransduction
Cellβcell adhesions are sites where cells experience and resist tugging forces. It has long been postulated, but not directly tested, that cadherin adhesion molecules may serve in mechanotransduction at cellβcell contacts. In this issue, Le Duc et al. (2010. J. Cell Biol. doi: 10.1083/jcb.201001149) provide direct evidence that E-cadherin participates in a mechanosensing pathway that regulates the actomyosin cytoskeleton to modulate cell stiffness in response to pulling force
ModelFLOWs-app: data-driven post-processing and reduced order modelling tools
This article presents an innovative open-source software named
ModelFLOWs-app, written in Python, which has been created and tested to
generate precise and robust hybrid reduced order models (ROMs) fully
data-driven. By integrating modal decomposition and deep learning methods in
diverse ways, the software uncovers the fundamental patterns in dynamic
systems. This acquired knowledge is then employed to enrich the comprehension
of the underlying physics, reconstruct databases from limited measurements, and
forecast the progression of system dynamics. These hybrid models combine
experimental and numerical database, and serve as accurate alternatives to
numerical simulations, effectively diminishing computational expenses, and also
as tools for optimization and control. The ModelFLOWs-app software has
demonstrated in a wide range of applications its great capability to develop
reliable data-driven hybrid ROMs, highlighting its potential in understanding
complex non-linear dynamical systems and offering valuable insights into
various applications. This article presents the mathematical background, review
some examples of applications and introduces a short tutorial of
ModelFLOWs-app
Investigating Sub-Spine Actin Dynamics in Rat Hippocampal Neurons with Super-Resolution Optical Imaging
Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM)βbased single-molecule tracking technique to analyze F-actin movements with βΌ30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow) and kinetic (F-actin turn-over) dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of βΌ138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines
Coordination of Membrane and Actin Cytoskeleton Dynamics during Filopodia Protrusion
Leading edge protrusion of migrating cells involves tightly coordinated changes in the plasma membrane and actin cytoskeleton. It remains unclear whether polymerizing actin filaments push and deform the membrane, or membrane deformation occurs independently and is subsequently stabilized by actin filaments. To address this question, we employed an ability of the membrane-binding I-BAR domain of IRSp53 to uncouple the membrane and actin dynamics and to induce filopodia in expressing cells. Using time-lapse imaging and electron microscopy of IRSp53-I-BAR-expressing B16F1 melanoma cells, we demonstrate that cells are not able to protrude or maintain durable long extensions without actin filaments in their interior, but I-BAR-dependent membrane deformation can create a small and transient space at filopodial tips that is subsequently filled with actin filaments. Moreover, the expressed I-BAR domain forms a submembranous coat that may structurally support these transient actin-free protrusions until they are further stabilized by the actin cytoskeleton. Actin filaments in the I-BAR-induced filopodia, in contrast to normal filopodia, do not have a uniform length, are less abundant, poorly bundled, and display erratic dynamics. Such unconventional structural organization and dynamics of actin in I-BAR-induced filopodia suggests that a typical bundle of parallel actin filaments is not necessary for generation and mechanical support of the highly asymmetric filopodial geometry. Together, our data suggest that actin filaments may not directly drive the protrusion, but only stabilize the space generated by the membrane deformation; yet, such stabilization is necessary for efficient protrusion
Heterogeneous Nuclear Ribonucleoprotein K Interacts with Abi-1 at Postsynaptic Sites and Modulates Dendritic Spine Morphology
BACKGROUND: Abelson-interacting protein 1 (Abi-1) plays an important role for dendritic branching and synapse formation in the central nervous system. It is localized at the postsynaptic density (PSD) and rapidly translocates to the nucleus upon synaptic stimulation. At PSDs Abi-1 is in a complex with several other proteins including WASP/WAVE or cortactin thereby regulating the actin cytoskeleton via the Arp 2/3 complex. PRINCIPAL FINDINGS: We identified heterogeneous nuclear ribonucleoprotein K (hnRNPK), a 65 kDa ssDNA/RNA-binding-protein that is involved in multiple intracellular signaling cascades, as a binding partner of Abi-1 at postsynaptic sites. The interaction with the Abi-1 SH3 domain is mediated by the hnRNPK-interaction (KI) domain. We further show that during brain development, hnRNPK expression becomes more and more restricted to granule cells of the cerebellum and hippocampal neurons where it localizes in the cell nucleus as well as in the spine/dendritic compartment. The downregulation of hnRNPK in cultured hippocampal neurons by RNAi results in an enlarged dendritic tree and a significant increase in filopodia formation. This is accompanied by a decrease in the number of mature synapses. Both effects therefore mimic the neuronal morphology after downregulation of Abi-1 mRNA in neurons. CONCLUSIONS: Our findings demonstrate a novel interplay between hnRNPK and Abi-1 in the nucleus and at synaptic sites and show obvious similarities regarding both protein knockdown phenotypes. This indicates that hnRNPK and Abi-1 act synergistic in a multiprotein complex that regulates the crucial balance between filopodia formation and synaptic maturation in neurons
Assembling Neurospheres: Dynamics of Neural Progenitor/Stem Cell Aggregation Probed Using an Optical Trap
Optical trapping (tweezing) has been used in conjunction with fluid flow technology to dissect the mechanics and spatio-temporal dynamics of how neural progenitor/stem cells (NSCs) adhere and aggregate. Hitherto unavailable information has been obtained on the most probable minimum time (βΌ5 s) and most probable minimum distance of approach (4β6 Β΅m) required for irreversible adhesion of proximate cells to occur. Our experiments also allow us to study and quantify the spatial characteristics of filopodial- and membrane-mediated adhesion, and to probe the functional dynamics of NSCs to quantify a lower limit of the adhesive force by which NSCs aggregate (βΌ18 pN). Our findings, which we also validate by computational modeling, have important implications for the neurosphere assay: once aggregated, neurospheres cannot disassemble merely by being subjected to shaking or by thermal effects. Our findings provide quantitative affirmation to the notion that the neurosphere assay may not be a valid measure of clonality and βstemnessβ. Post-adhesion dynamics were also studied and oscillatory motion in filopodia-mediated adhesion was observed. Furthermore, we have also explored the effect of the removal of calcium ions: both filopodia-mediated as well as membrane-membrane adhesion were inhibited. On the other hand, F-actin disrupted the dynamics of such adhesion events such that filopodia-mediated adhesion was inhibited but not membrane-membrane adhesion
IQGAP1 Is Involved in Post-Ischemic Neovascularization by Regulating Angiogenesis and Macrophage Infiltration
Neovascularization is an important repair mechanism in response to ischemic injury and is dependent on inflammation, angiogenesis and reactive oxygen species (ROS). IQGAP1, an actin-binding scaffold protein, is a key regulator for actin cytoskeleton and motility. We previously demonstrated that IQGAP1 mediates vascular endothelial growth factor (VEGF)-induced ROS production and migration of cultured endothelial cells (ECs); however, its role in post-ischemic neovascularization is unknown.Ischemia was induced by left femoral artery ligation, which resulted in increased IQGAP1 expression in Mac3(+) macrophages and CD31(+) capillary-like ECs in ischemic legs. Mice lacking IQGAP1 exhibited a significant reduction in the post-ischemic neovascularization as evaluated by laser Doppler blood flow, capillary density and Ξ±-actin positive arterioles. Furthermore, IQGAP1(-/-) mice showed a decrease in macrophage infiltration and ROS production in ischemic muscles, leading to impaired muscle regeneration and increased necrosis and fibrosis. The numbers of bone marrow (BM)-derived cells in the peripheral blood were not affected in these knockout mice. BM transplantation revealed that IQGAP1 expressed in both BM-derived cells and tissue resident cells, such as ECs, is required for post-ischemic neovascularization. Moreover, thioglycollate-induced peritoneal macrophage recruitment and ROS production were inhibited in IQGAP1(-/-) mice. In vitro, IQGAP1(-/-) BM-derived macrophages showed inhibition of migration and adhesion capacity, which may explain the defective macrophage recruitment into the ischemic tissue in IQGAP1(-/-) mice.IQGAP1 plays a key role in post-ischemic neovascularization by regulating, not only, ECs-mediated angiogenesis but also macrophage infiltration as well as ROS production. Thus, IQGAP1 is a potential therapeutic target for inflammation- and angiogenesis-dependent ischemic cardiovascular diseases
Cellular Entry of Ebola Virus Involves Uptake by a Macropinocytosis-Like Mechanism and Subsequent Trafficking through Early and Late Endosomes
Zaire ebolavirus (ZEBOV), a highly pathogenic zoonotic virus, poses serious public health, ecological and potential bioterrorism threats. Currently no specific therapy or vaccine is available. Virus entry is an attractive target for therapeutic intervention. However, current knowledge of the ZEBOV entry mechanism is limited. While it is known that ZEBOV enters cells through endocytosis, which of the cellular endocytic mechanisms used remains unclear. Previous studies have produced differing outcomes, indicating potential involvement of multiple routes but many of these studies were performed using noninfectious surrogate systems such as pseudotyped retroviral particles, which may not accurately recapitulate the entry characteristics of the morphologically distinct wild type virus. Here we used replication-competent infectious ZEBOV as well as morphologically similar virus-like particles in specific infection and entry assays to demonstrate that in HEK293T and Vero cells internalization of ZEBOV is independent of clathrin, caveolae, and dynamin. Instead the uptake mechanism has features of macropinocytosis. The binding of virus to cells appears to directly stimulate fluid phase uptake as well as localized actin polymerization. Inhibition of key regulators of macropinocytosis including Pak1 and CtBP/BARS as well as treatment with the drug EIPA, which affects macropinosome formation, resulted in significant reduction in ZEBOV entry and infection. It is also shown that following internalization, the virus enters the endolysosomal pathway and is trafficked through early and late endosomes, but the exact site of membrane fusion and nucleocapsid penetration in the cytoplasm remains unclear. This study identifies the route for ZEBOV entry and identifies the key cellular factors required for the uptake of this filamentous virus. The findings greatly expand our understanding of the ZEBOV entry mechanism that can be applied to development of new therapeutics as well as provide potential insight into the trafficking and entry mechanism of other filoviruses
- β¦