18 research outputs found

    Noise and vibration from building-mounted micro wind turbines Part 2: Results of measurements and analysis

    Get PDF
    Description To research the quantification of vibration from a micro turbine, and to develop a method of prediction of vibration and structure borne noise in a wide variety of installations in the UK. Objective The objectives of the study are as follows: 1) Develop a methodology to quantify the amount of source vibration from a building mounted micro wind turbine installation, and to predict the level of vibration and structure-borne noise impact within such buildings in the UK. 2) Test and validate the hypothesis on a statically robust sample size 3) Report the developed methodology in a form suitable for widespread adoption by industry and regulators, and report back on the suitability of the method on which to base policy decisions for a future inclusion for building mounted turbines in the GPDO

    Noise and vibration from building-mounted micro wind turbines part 3 : prediction methodology

    Get PDF
    This brief report describes a simplified method for estimation of levels of structure-borne sound in buildings to which a micro-wind turbine (MWT) is attached. The method is applicable to two specific designs of MWT, each for three lengths of mounting pole and for masonry buildings. The output gives expected noise level for given rotational speed of the MWT. Applicability and limitations of the method are described. A more general methodology is provided in companion reports but requires specialist knowledge to implement. Structure-borne sound is notoriously difficult to predict and several assumptions have been necessary in order to produce a sufficiently simple estimation method. Therefore, caution is required in relying on the predictions until sufficient confidence has been built up through experience of real installations

    Détermination de l’origine des matières en suspension en transit sur le Rhône : utilisation de la signature géochimique de la fraction résiduelle des particules

    No full text
    National audienceAu sein des rivières, les matières en suspension (MES) représentent la voie principale d’apports en nutriments et contaminants. Aussi, il est nécessaire d’obtenir des informations sur l’origine de ces MES afin d’appliquer des stratégies efficaces pour la gestion des sédiments. Dans le cadre de l’Observatoire des Sédiments du Rhône (OSR), un des objectifs du programme vise à identifier les sources de MES sur le Rhône et ses affluents. Dans ce cadre, un réseau de stations a été mis en place afin de collecter de façon continue les MES sur le Rhône et ses affluents en fonction des différentes conditions hydrologiques. Pour déterminer l’origine des MES en transit sur le Rhône, nous avons développé une méthode originale de traçage des particules s’appuyant sur l’analyse des éléments traces et majeurs dans la fraction non réactive des particules, permettant d’obtenir un signal conservatif dans le temps et dans l’espace. Pour cela les MES ont été soumises à deux types d’extractions (totale et « douce ») permettant d’obtenir après analyse par ICP-AES et ICP-MS la concentration en éléments traces et majeurs dans la fraction résiduelle des particules. Cette approche a notamment été développée sur le Haut-Rhône pour discriminer l’origine des MES à la station de Jons (amont de Lyon) entre les différents affluents amonts (Arve, Bourbre, Fier, Guiers et Ain). Nous avons ainsi identifié 6 éléments (Cr, Cu, Fe, Mg, Ni and Ti) permettant de discriminer les MES à la station de Jons. Grâce à un modèle de mélange nous avons pu déterminer les contributions relatives des affluents au flux de MES à Jons et les confronter à un modèle hydro-sédimentaire pour différentes conditions hydrologiques

    Structure-borne sound and vibration from building-mounted wind turbines

    No full text
    Noise continues to be a significant factor in the development of wind energy resources. In the case of building-mounted wind turbines (BMWTs), in addition to the usual airborne sound there is the potential for occupants to be affected by structure-borne sound and vibration transmitted through the building structure. Usual methods for prediction and evaluation of noise from large and small WTs are not applicable to noise of this type. This letter describes an investigation aiming to derive a methodology for prediction of structure-borne sound and vibration inside attached dwellings. Jointly funded by three UK government departments, the work was motivated by a desire to stimulate renewable energy generation by the removal of planning restrictions where possible. A method for characterizing BMWTs as sources of structure-borne sound was first developed during a field survey of two small wind turbines under variable wind conditions. The 'source strength' was established as a function of rotor speed although a general relationship to wind speed could not be established. The influence of turbulence was also investigated. The prediction methodology, which also accounts for the sound transmission properties of the mast and supporting building, was verified in a field survey of existing installations. Significant differences in behavior and subjective character were noted between the airborne and structure-borne noise from BMWTs
    corecore