4,960 research outputs found

    Time-dependent Mechanics and Lagrangian submanifolds of Dirac manifolds

    Full text link
    A description of time-dependent Mechanics in terms of Lagrangian submanifolds of Dirac manifolds (in particular, presymplectic and Poisson manifolds) is presented. Two new Tulczyjew triples are discussed. The first one is adapted to the restricted Hamiltonian formalism and the second one is adapted to the extended Hamiltonian formalism

    On the Hamilton-Jacobi Theory for Singular Lagrangian Systems

    Full text link
    We develop a Hamilton-Jacobi theory for singular lagrangian systems using the Gotay-Nester-Hinds constraint algorithm. The procedure works even if the system has secondary constraints.Comment: 36 page

    Multivector Field Formulation of Hamiltonian Field Theories: Equations and Symmetries

    Full text link
    We state the intrinsic form of the Hamiltonian equations of first-order Classical Field theories in three equivalent geometrical ways: using multivector fields, jet fields and connections. Thus, these equations are given in a form similar to that in which the Hamiltonian equations of mechanics are usually given. Then, using multivector fields, we study several aspects of these equations, such as the existence and non-uniqueness of solutions, and the integrability problem. In particular, these problems are analyzed for the case of Hamiltonian systems defined in a submanifold of the multimomentum bundle. Furthermore, the existence of first integrals of these Hamiltonian equations is considered, and the relation between {\sl Cartan-Noether symmetries} and {\sl general symmetries} of the system is discussed. Noether's theorem is also stated in this context, both the ``classical'' version and its generalization to include higher-order Cartan-Noether symmetries. Finally, the equivalence between the Lagrangian and Hamiltonian formalisms is also discussed.Comment: Some minor mistakes are corrected. Bibliography is updated. To be published in J. Phys. A: Mathematical and Genera

    Higher-order Mechanics: Variational Principles and other topics

    Get PDF
    After reviewing the Lagrangian-Hamiltonian unified formalism (i.e, the Skinner-Rusk formalism) for higher-order (non-autonomous) dynamical systems, we state a unified geometrical version of the Variational Principles which allows us to derive the Lagrangian and Hamiltonian equations for these kinds of systems. Then, the standard Lagrangian and Hamiltonian formulations of these principles and the corresponding dynamical equations are recovered from this unified framework.Comment: New version of the paper "Variational principles for higher-order dynamical systems", which was presented in the "III Iberoamerican Meeting on Geometry, Mechanics and Control" (Salamanca, 2012). The title is changed. A detailed review is added. Sections containing results about variational principles are enlarged with additional comments, diagrams and summarizing results. Bibliography is update

    A Generalization of Chetaev's Principle for a Class of Higher Order Non-holonomic Constraints

    Get PDF
    The constraint distribution in non-holonomic mechanics has a double role. On one hand, it is a kinematic constraint, that is, it is a restriction on the motion itself. On the other hand, it is also a restriction on the allowed variations when using D'Alembert's Principle to derive the equations of motion. We will show that many systems of physical interest where D'Alembert's Principle does not apply can be conveniently modeled within the general idea of the Principle of Virtual Work by the introduction of both kinematic constraints and variational constraints as being independent entities. This includes, for example, elastic rolling bodies and pneumatic tires. Also, D'Alembert's Principle and Chetaev's Principle fall into this scheme. We emphasize the geometric point of view, avoiding the use of local coordinates, which is the appropriate setting for dealing with questions of global nature, like reduction.Comment: 27 pages. Journal of Mathematical Physics (to zappear

    Renormalization Group Study of Chern-Simons Field Coupled to Scalar Matter in a Modified BPHZ Subtraction Scheme

    Get PDF
    We apply a soft version of the BPHZ subtraction scheme to the computation of two-loop corrections from an Abelian Chern-Simons field coupled to (massive) scalar matter with a λ(ΦΦ)2\lambda(\Phi^\dag\Phi)^2 and ν(ΦΦ)3\nu(\Phi^\dag\Phi)^3 self-interactions. The two-loop renormalization group functions are calculated. We compare our results with those in the literature.Comment: 15 pages, 7 figures, revtex. To appear in Phys. Rev.

    Near-Earth asteroids spectroscopic survey at Isaac Newton Telescope

    Full text link
    The population of near-Earth asteroids (NEAs) shows a large variety of objects in terms of physical and dynamical properties. They are subject to planetary encounters and to strong solar wind and radiation effects. Their study is also motivated by practical reasons regarding space exploration and long-term probability of impact with the Earth. We aim to spectrally characterize a significant sample of NEAs with sizes in the range of \sim0.25 - 5.5 km (categorized as large), and search for connections between their spectral types and the orbital parameters. Optical spectra of NEAs were obtained using the Isaac Newton Telescope (INT) equipped with the IDS spectrograph. These observations are analyzed using taxonomic classification and by comparison with laboratory spectra of meteorites. A total number of 76 NEAs were observed. We classified 44 of them as Q/S-complex, 16 as B/C-complex, eight as V-types, and another eight belong to the remaining taxonomic classes. Our sample contains 27 asteroids categorized as potentially hazardous and 31 possible targets for space missions including (459872) 2014 EK24, (436724) 2011 UW158, and (67367) 2000 LY27. The spectral data corresponding to (276049) 2002 CE26 and (385186) 1994 AW1 shows the 0.7 μ\mum feature which indicates the presence of hydrated minerals on their surface. We report that Q-types have the lowest perihelia (a median value and absolute deviation of 0.797±0.2440.797\pm0.244 AU) and are systematically larger than the S-type asteroids observed in our sample. We explain these observational evidences by thermal fatigue fragmentation as the main process for the rejuvenation of NEA surfaces. In general terms, the taxonomic distribution of our sample is similar to the previous studies and matches the broad groups of the inner main belt asteroids. Nevertheless, we found a wide diversity of spectra compared to the standard taxonomic types.Comment: Accepted in Astronomy & Astrophysics (A&A

    Non-standard connections in classical mechanics

    Full text link
    In the jet-bundle description of first-order classical field theories there are some elements, such as the lagrangian energy and the construction of the hamiltonian formalism, which require the prior choice of a connection. Bearing these facts in mind, we analyze the situation in the jet-bundle description of time-dependent classical mechanics. So we prove that this connection-dependence also occurs in this case, although it is usually hidden by the use of the ``natural'' connection given by the trivial bundle structure of the phase spaces in consideration. However, we also prove that this dependence is dynamically irrelevant, except where the dynamical variation of the energy is concerned. In addition, the relationship between first integrals and connections is shown for a large enough class of lagrangians.Comment: 17 pages, Latex fil

    Physical routes for the synthesis of kesterite

    Get PDF
    This paper provides an overview of the physical vapor technologies used to synthesize Cu2ZnSn(S,Se)4 thin films as absorber layers for photovoltaic applications. Through the years, CZT(S,Se) thin films have been fabricated using sequential stacking or co-sputtering of precursors as well as using sequential or co-evaporation of elemental sources, leading to high-efficient solar cells. In addition, pulsed laser deposition of composite targets and monograin growth by the molten salt method were developed as alternative methods for kesterite layers deposition. This review presents the growing increase of the kesterite-based solar cell efficiencies achieved over the recent years. A historical description of the main issues limiting this efficiency and of the experimental pathways designed to prevent or limit these issues is provided and discussed as well. Afinal section is dedicated to the description of promising process steps aiming at further improvements of solar cell efficiency, such as alkali doping and bandgap grading1. R Caballero and M León acknowledge financial support via the Spanish Ministry of Science, Innovation and Universities project (WINCOST, ENE2016-80788-C5-2-R) and thank H2020 EU Programme under the project INFINITE-CELL (H2020-MSCA-RISE-2017-777968). 2. S Canulescu and J Schou acknowledge the support from Innovation Fund Denmark. 3. D-H Kim acknowledges financial support via the DGIST R&D Program of the Ministry of Science and ICT, KOREA (18-BD-05). 4.C. Malerba acknowledges the support from the Italian Ministry of Economic development in the framework of the Operating Agreement with ENEA for the Research on the Electric System. 5.A Redinger acknowledges financial support via the FNR Attract program, Project : SUNSPOT, Nr.11244141. 6. E Saucedo thanks H2020 EU Programme under the projects STARCELL (H2020-NMBP-03-2016-720907) and INFINITE-CELL (H2020-MSCA-RISE-2017-777968), the Spanish Ministry of Science, Innovation and Universities for the IGNITE project (ENE2017-87671-C3-1-R), and the European Regional Development Funds (ERDF, FEDER Programa Competitivitat de Catalunya 2007–2013). IREC belong to the SEMS (Solar Energy Materials and Systems) Consolidated Research Group of the ‘Generalitat de Catalunya’ (Ref. 2017 SGR 862). 7. Taltech acknowledges financial support via the Estonian Ministry of Education and Research funding project IUT19-28 and the European Union Regional Development Fund, Project TK141. 8. B Vermang has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (Grant Agreement No 715027

    Influence of temperament on performance and carcass quality of commercial Brahman steers in a Colombian tropical grazing system

    Get PDF
    Temperament is defined as individual behavioral responses to potentially fear-eliciting or challenging situations related to human presence and handling. A total of 190 steers of commercial Zebu Brahman (Bos indicus) were used in this study, selected when they were between 10 and 11 months of age, fattened for 24 months (720 days) and slaughtered between 34 and 35 months of age. Using a temperament index (based on two tests: chute and exit score), animals were classified as calm, restless, or nervous. In general, calm animals had a longer carcass, a higher slaughter and fasting weight, and a normal pH24 (<5.7). However, carcass yield was significantly higher in nervous than in restless animals, but did not differ from that of calm steers. It is important to note that these results were obtained under experimental conditions, therefore, effects could have a greater impact on carcass quality under commercial conditions. © 2022 The Author
    corecore