162 research outputs found

    Global environmental changes: setting priorities for Latin American coastal habitats.

    Get PDF
    The definitive version is available at www.blackwell-synergy.comThe Intergovernmental Panel for Climate Change (IPCC) reports that Global Environmental Changes (GEC) are occurring quicker than at any other time over the last 25 million years and impacting upon marine environments (Bellard et al., 2012). There is overwhelming evidence showing that GEC are affecting both the quality and quantity of the goods and services provided by a wide range of marine ecosystems. In order to discuss regional preparedness for global environmental changes, a workshop was held in Ilhabela, Brazil (22- 26 April 2012) entitled "Evaluating the Sensitivity of Central and South American Benthic Communities to Global Environmental Changes" that drew together scientists from ten Latin American and three European countries. © 2013 Blackwell Publishing Ltd

    A randomized, double-blind, placebo-controlled trial to assess the efficacy of topiramate in the treatment of post-traumatic stress disorder

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Topiramate might be effective in the treatment of posttraumatic stress disorder (PTSD) because of its antikindling effect and its action in both inhibitory and excitatory neurotransmitters. Open-label studies and few controlled trials have suggested that this anticonvulsant may have therapeutic potential in PTSD. This 12-week randomized, double-blind, placebo-controlled clinical trial will compare the efficacy of topiramate with placebo and study the tolerability of topiramate in the treatment of PTSD.</p> <p>Methods and design</p> <p>Seventy-two adult outpatients with DSM-IV-diagnosed PTSD will be recruited from the violence program of Federal University of São Paulo Hospital (UNIFESP). After informed consent, screening, and a one week period of wash out, subjects will be randomized to either placebo or topiramate for 12 weeks. The primary efficacy endpoint will be the change in the Clinician-administered PTSD scale (CAPS) total score from baseline to the final visit at 12 weeks.</p> <p>Discussion</p> <p>The development of treatments for PTSD is challenging due to the complexity of the symptoms and psychiatric comorbidities. The selective serotonin reuptake inhibitors (SSRIs) are the mainstream treatment for PTSD, but many patients do not have a satisfactory response to antidepressants. Although there are limited clinical studies available to assess the efficacy of topiramate for PTSD, the findings of prior trials suggest this anticonvulsant may be promising in the management of these patients.</p> <p>Trial Registration</p> <p>NCT 00725920</p

    Glucocorticoid Regulation of Astrocytic Fate and Function

    Get PDF
    Glial loss in the hippocampus has been suggested as a factor in the pathogenesis of stress-related brain disorders that are characterized by dysregulated glucocorticoid (GC) secretion. However, little is known about the regulation of astrocytic fate by GC. Here, we show that astrocytes derived from the rat hippocampus undergo growth inhibition and display moderate activation of caspase 3 after exposure to GC. Importantly, the latter event, observed both in situ and in primary astrocytic cultures is not followed by either early- or late-stage apoptosis, as monitored by stage I or stage II DNA fragmentation. Thus, unlike hippocampal granule neurons, astrocytes are resistant to GC-induced apoptosis; this resistance is due to lower production of reactive oxygen species (ROS) and a greater buffering capacity against the cytotoxic actions of ROS. We also show that GC influence hippocampal cell fate by inducing the expression of astrocyte-derived growth factors implicated in the control of neural precursor cell proliferation. Together, our results suggest that GC instigate a hitherto unknown dialog between astrocytes and neural progenitors, adding a new facet to understanding how GC influence the cytoarchitecture of the hippocampus

    Abrolhos Bank Reef Health Evaluated by Means of Water Quality, Microbial Diversity, Benthic Cover, and Fish Biomass Data

    Get PDF
    The health of the coral reefs of the Abrolhos Bank (southwestern Atlantic) was characterized with a holistic approach using measurements of four ecosystem components: (i) inorganic and organic nutrient concentrations, [1] fish biomass, [1] macroalgal and coral cover and (iv) microbial community composition and abundance. The possible benefits of protection from fishing were particularly evaluated by comparing sites with varying levels of protection. Two reefs within the well-enforced no-take area of the National Marine Park of Abrolhos (Parcel dos Abrolhos and California) were compared with two unprotected coastal reefs (Sebastião Gomes and Pedra de Leste) and one legally protected but poorly enforced coastal reef (the “paper park” of Timbebas Reef). The fish biomass was lower and the fleshy macroalgal cover was higher in the unprotected reefs compared with the protected areas. The unprotected and protected reefs had similar seawater chemistry. Lower vibrio CFU counts were observed in the fully protected area of California Reef. Metagenome analysis showed that the unprotected reefs had a higher abundance of archaeal and viral sequences and more bacterial pathogens, while the protected reefs had a higher abundance of genes related to photosynthesis. Similar to other reef systems in the world, there was evidence that reductions in the biomass of herbivorous fishes and the consequent increase in macroalgal cover in the Abrolhos Bank may be affecting microbial diversity and abundance. Through the integration of different types of ecological data, the present study showed that protection from fishing may lead to greater reef health. The data presented herein suggest that protected coral reefs have higher microbial diversity, with the most degraded reef (Sebastião Gomes) showing a marked reduction in microbial species richness. It is concluded that ecological conditions in unprotected reefs may promote the growth and rapid evolution of opportunistic microbial pathogens
    corecore