36 research outputs found

    Damage assessment in beam-like structures by correlation of spectrum using machine learning

    Get PDF
    Damage assessment in the actual operating process of the structure is a modern and exciting problem of construction engineering due to several practical knowledge about the current condition of the inspected structures. However, the problem faced is the difficulty in controlling the excitation in structures. Therefore, the output-based structural damage identification method is becoming attractive because of its potential to be applied to an actual application without being constrained by the collection of the information excitation source. An approach of damage assessment based on supervised Machine Learning is introduced in this study by using the correlation of spectral signal as an input feature for artificial neural network (ANN) and decision tree. The output of machine learning algorithms consists of the appearance of new cuts, the level of cutting and the cutting position. A supported beam model was constructed as an experiment to determine if the method is reasonable for engineering structures. Two machine learning algorithms have been applied to check the relevance of the proposed feature from vibration data. This study contributes a standard in the damage identification problem based on spectral correlation

    IELTS Reading: Perceived Challenges and Strategies by Vietnamese University English Majors

    Get PDF
    This study focused on identifying Vietnamese English as a foreign language (EFL) students’ perception of their challenges in doing the IELTS reading test and corresponding strategies to cope with these challenges. The study involved eighty-nine English majors at Can Tho University, and data were collected via a questionnaire administered to all participants and interviews conducted with 10 random students. The results showed that Vietnamese EFL students encountered a number of challenges in doing IELTS reading tests, among which lack of vocabulary and time constraint for the tests were two most noticeable difficulties. The results also revealed that the students in the study frequently employed text related, question related, and general practical strategies for doing the reading test in IELTS. Based on the findings, more opportunities to expose students to tests as well as an integration of instruction on test-taking  strategies were suggested. Keywords: EFL Vietnamese students, IELTS reading test, reading strategies, test-taking techniques DOI: 10.7176/JEP/14-28-03 Publication date:October 31st 202

    DISTRIBUTION OF USEFUL AND HARMFUL MICROORGANISMS IN SHRIMP AQUACULTURE WATER IN TIEN HAI COASTAL OF THAI BINH PROVINCE

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    Damage assessment in beam-like structures by correlation of spectrum using machine learning

    Get PDF
    Damage assessment in the actual operating process of the structure is a modern and exciting problem of construction engineering due to several practical knowledge about the current condition of the inspected structures. However, the problem faced is the difficulty in controlling the excitation in structures. Therefore, the output-based structural damage identification method is becoming attractive because of its potential to be applied to an actual application without being constrained by the collection of the information excitation source. An approach of damage assessment based on supervised Machine Learning is introduced in this study by using the correlation of spectral signal as an input feature for artificial neural network (ANN) and decision tree. The output of machine learning algorithms consists of the appearance of new cuts, the level of cutting and the cutting position. A supported beam model was constructed as an experiment to determine if the method is reasonable for engineering structures. Two machine learning algorithms have been applied to check the relevance of the proposed feature from vibration data. This study contributes a standard in the damage identification problem based on spectral correlation

    Aromatic hydrocarbon degradation of biofilm formed by microorganisms on cellulose material at 50 litre modules

    Get PDF
    Biofilms are defined as community of microorganisms which are irreversibly or reversibly attached on solid surfaces. These microorganisms are embedded in a self-produced exopolysaccharide matrix, and exhibit different growth and bioactivity compared with planktonic cells. With their high biomass density, stability, and potential for biodegradation of recalcitrant compounds contained in oil contaminated wastewater such as aromatic hydrocarbons. Aromatic hydrocarbons are the main constituents of petroleum and its refined products. These compounds are also quantitatively the main environmental pollutants worldwide. In this report, cellulose material was used as a carrier for forming biofilm by microorganisms to remove of these components. Cellulose material is considered as inexpensive, available, sustainable, little waste production and can be recycled. As a result, the microorganisms were successful to adhere on cellulose material at 50 liter module with cell density of 4.3x108 CFU/ml after 7 day-incubation. Under the scanning electron microscope with the 1500 magnification, the microbial cells had a very high density, closely linked together and firm adhesion on the cellulose material. The mixture species biofilm attached on cellulose carrier at 50 liter module had the ability to degrade 80.1, 78.3, 60.0, 98.5 and 91.2% of anthracene, fluorene, naphthalene, phenol and pyrene after 7 days, respectively. The obtained results showed that biofilm formed by multiple bacterial strains attached on cellulose material may considerably increase the degrading efficiency of aromatic hydrocarbon compounds. The results also indicated that cellulose material is suitable carrier to choose in removal of aromatic hydrocarbon contaminated wastewater. These results are considered as new approach to apply microbial films on cellulose material to degrade oil polluted waste-water in the environment

    Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions

    Degradation of branched chain aliphatic and aromatic petroleum hydrocarbons by microorganisms

    No full text
    Der Abbau und die Eliminierung von Schadstoffen, die durch zunehmende Industrialisierung und Verkehr nach wie vor in beträchtlichem Umfang in die Umwelt gelangen, ist für di Gesunderhaltung der Menschen und den Artenschutz von Pflanzen und Tieren eine bedeutsame und vordringliche Aufgabe. Zu der von der Menge her mit Abstand wichtigster Schadstoffgruppe zählen Erdöl und dessen Raffinierungsprodukte, wie beispielsweise Dieselkraftstoff und Benzin. Diese Produkte bestehen aus mehr als 1000 Einzelverbindungen, von denen ein Großteil weitgehend ungefährlich und leicht in der Umwelt abbaubar ist. Jedoch bleiben vielfach nach Biodegradationsprozessen kleinere, schwer abbaubare Fraktionen zurück, in denen sich unter anderem verzweigtkettige Kohlenwasserstoffe, kondensierte Aromaten und Cycloalkane befinden, die sich aufgrund des seltenen Vorkommens von Mikroorganismen mit entsprechenden hohen Abbauaktivitäten anreichern und als relativ persistent erweisen. Ein besonderes Problem dabei war es, hochreine Modellsubstanzen (ohne begleitende Verunreinigungen) mit verzweigten aliphatischen Ketten als Ausgangssubstrate zur Verfügung zu haben. Mit dem Einsatz von Pristan, einem 4-fach methylverzweigten längerkettign Alkan sowie den mittels HPLC-Analysen besser zugänglichen aromatichen, einfach verzweigten Kohlenwasserstoffen sek.-Octylbenzen und iso-Pentylbenzen waren Voraussetzungen gegeben, die Abbaumechanischmen dieser Modellsubstanzen im Detail zu untersuchen. Zum einen ist hervorzuheben, dass die schließlich gefundenen und eingesetzten Mikroorganismen, vor allem Nocardia cyriacigeorgica (Isolat aus Saudi-Arabien), Mycobacterium neoaurum und Rhodococcus ruber, im Hinblich auf eine Verwertung von verzweigtkettigen Kohlenwasserstoffen bisher nicht bekannt sind. Die bisher beschriebenen Pristan verwertenden Bakterien wurden in de Regel nur bis zur Gattungsebene bestimmt; nur zwei exakt identifizierte Bakterienarten, Brevibacterium erythrogenes und Nocardia globerula, sind bisher als Pristanverwerter bekannt. Zum anderen gelang es wir durch exakten chemische Analyse 11 Pristanmetaboliten für Pristan zu erstellen, das als das bisher vollständigste Schema für eine biogen bedingte Pristanumsetzung gelten kann. Vor allem der Pathway III (eine subterminale Oxidation) wurde zum ersten Mal im Detail beschrieben. Auch für die Umsetzung von iso-Pentylbenzen und sek.-Octylbenzen konnten insgesamt 23 Metaboliten in ihrer Struktur aufgeklärt und mehrere neue Metaboliten beschrieben werden. Auch für diese Schadstoffe konnten umfassende und neue Abbau-Schemata erstellt werden. Für sek.-Octylbenzen liegt nunmehr mit 15 nachgewiesenen Intermediaten ebenfalls das bisher umfassendste Abbauschema für Mikroorganismen vor. Für Trichosporon mucoides, eine Hefe, die bisher vor allem als Aromatenverwerter bekannt war (und die nicht auf n-Alkanen wachsen kann) konnte erstmals die Fähigkeit zur Oxydation von Alkylketten (am Beispiel von weniger hydrophoben Substanzen) nachgewiesen werden. Zusammenfassend kann festgestellt werden, dass die Untersuchungen von großem Interesse für die Reinigung von persistierende Ölresten in verunreinigten Arealen sowie für die Transformation von verzweigten Alkylketten verschiedenster chemischer Substanzen durch Mikroorganismen sind.The overall aim of the work was to investigate the ability of several Gram-positive bacteria including Mycocbacterium neoaurum SBUG 109, Nocardia cyriacigeorgica SBUG 1472 and Rhodococcus ruber SBUG 82 and the yeast Trichosporon mucoides SBUG-Y 801 to degrade and transform branched chain hydrocarbons which occur in petroleum and its fraction products such as gasoline or gas oil and which are known as important and recalcitrant environmental pollutants. Pristane, iso-pentylbenzene and sec-octylbenzene were used in this work as model compounds. These compounds represent significant groups of petroleum constituents (branched chain alkanes and aromatic hydrocarbons). Three bacteria and the yeast T. mucoides SBUG-Y 801 were selected in a screen of 16 hydrocarbon-utilizing strains in the SBUG collection and from 21 isolated hydrocarbon-utilizing strains from oil-contaminated habitats of Saudi Arabian Desert and of Vietnam. The bacteria were identified in cooperation with DSZM (Deutsche Sammlung von Mikroorganismen und Zellkulturen) as M. neoaurum SBUG 109, N. cyriacigeorgica SBUG 1472, R. ruber SBUG 82. These bacterial and yeast strains were shown to possess high potential for degrading and transforming pristane, iso-pentylbenzene and sec-octylbenzene. The intermediates produced by these bacteria during incubation with pristane were analyzed by GC and GC/MS. The products 4-methyl pentanoic acid; methyl butanedioic acid; 2-methyl pentadioic acid; methyl propanedioic acid; 4-methyl heptanedioic acid and 2,6,10,14–tetramethyl-pentadecan–3–one were detected in M. neoaurum cultures. In R. ruber, methyl butanedioic acid; 2-methyl pentadioic acid; 4,8-dimethylnonanoic acid, 4-methyl heptanedioic acid; 2,6,10–trimethylundecanoic acid; 3,7-dimethyl decanedioic acid and 2,6,10,14–tetramethyl–pentadecan–3-one were identified. In N. cyriacigeorgica, 2-methylpentanedioic acid; 4,8-dimethylnonanedioic acid; 2,6-dimethylheptanedioic acid and pristanic acid were found. The detection of 11 intermediates during pristane degradation by the three Gram-positive bacteria provided sufficient information to elucidate in detail three degradative pathways of pristane involving mono-, di- and sub-terminal oxidations. The sub-terminal oxidation by M. neoaurum and R. ruber was demonstrated for the first time. This occurence of a sub-terminal oxidation in these strains was strengthened by further results of aromatic compounds transformation (see below). During this pathway, ketone mono-oxygenation reactions seem to be involved. Because of this it will be of interest to look more closely at the catalytic processes involved and their possible extension to the bio-degradation of other branched chain hydrocarbons. Since in the present study 59 %, 51 % and 84 % of pristane were degraded in 3 weeks by M. neoaurum, R. ruber and N. cyriacigeorgica, this illustrated that the degradation rates of this isoprenoid alkane were high. The bacteria we studied were not only effective degraders of multiple branched chain alkane but also useful transformers of aromatic hydrocarbons. The intermediates produced were analyzed by comparing the retention times and UV/Vis spectra of the HPLC elution profile as well as the retention times and mass spectra of the GC/MS with those of available standards. Using iso-pentylbenzene as a substrate, 8 metabolites were generated by M. neoaurum transformation including product A (phenylacetic acid), B (acetophenone), D (iso-valerophenone), E (succinic acid), F (benzoic acid), G [(2-hydroxy-phenyl)-acetic acid] and H (2-methyl-4-phenyl-butyric acid). We additionally identified an alkyl hydroxylated iso-pentylbenzene derivative as 2-methyl-4-phenyl-butan-2-ol or 2-methyl-4-phenyl-butan-1-ol. Two metabolites (C and D) were detected by N. cyriacigeorgica transformation and three metabolites (A, D and F) were identified by R. ruber transformation which led to the complete biotransformation of this substance. iso-Pentylbenzene transformation by M. neoaurum was initiated by attack on the alkyl side chain followed by ring cleavage. The appearance of iso-valeorophenone confirmed the occurrence of a sub-terminal oxidation mechanism in M. neoaurum and R. ruber. In addition to products A, C, D and G, the identification X-(3–methyl–butyl)-phenol (X means that position of the hydroxy group on the aromatic ring system, such as 2, 3 or 4 remained unclear) in T. mucoides cultivation demonstrated for the first time the capacity of alkyl side chain attack by this organism which was hitherto known only for its ability of ring cleavage. The detection of 15 degradation products of sec-octylbenzene (including 2-phenylpropionic acid, 3-phenylbutyric acid, ß-methylcinnamic acid, 5-phenylhexanoic acid, acetophenone, 2-hydroxy-acetophenone, 2,3-dihydroxy-benzoic acid, succinic acid, 7-phenyloctan-2-one, benzoic acid, phenylacetic acid, 7-phenyl-octan-2-ol, hydroxy-phenylacetic acid and 2-hydroxybenzoic acid), in the studied bacteria pointed to an effective sec-octylbenzene degradation pathway in which dehydrogenation of 3-phenylbutyric acid to form ß-methylcinnamic acid is a newly described option. The identification of 2-phenylpropionic acid and 3-phenylbutyric acid in sec-octylbenzene transformation experiments by T. mucoides confirmed the possibility of alkyl side chain attack by this yeast. Summarizing the results, we describe for the first time in detail the biotransformation of sec-octylbenzene by M. neoaurum, N. cyriacigeorgica, R. ruber and T. mucoides. Our results suggest that these microorganisms may be useful as potential strains for hydrocarbon degradation and it may be of interest to investigate their suitability to solve specific environmental pollutant problems associated with branched chain aliphatic and alkyl-branched compounds which contribute to the persistence of hydrocarbon fractions in the environment
    corecore