4,399 research outputs found
OPTICAL NAVIGATION TECHNIQUES FOR MINIMALLY INVASIVE ROBOTIC SURGERIES
Minimally invasive surgery (MIS) involves small incisions in a patient's body, leading to reduced medical risk and shorter hospital stays compared to open surgeries. For these reasons, MIS has experienced increased demand across different types of surgery. MIS sometimes utilizes robotic instruments to complement human surgical manipulation to achieve higher precision than can be obtained with traditional surgeries. Modern surgical robots perform within a master-slave paradigm, in which a robotic slave replicates the control gestures emanating from a master tool manipulated by a human surgeon. Presently, certain human errors due to hand tremors or unintended acts are moderately compensated at the tool manipulation console. However, errors due to robotic vision and display to the surgeon are not equivalently addressed. Current vision capabilities within the master-slave robotic paradigm are supported by perceptual vision through a limited binocular view, which considerably impacts the hand-eye coordination of the surgeon and provides no quantitative geometric localization for robot targeting. These limitations lead to unexpected surgical outcomes, and longer operating times compared to open surgery.
To improve vision capabilities within an endoscopic setting, we designed and built several image guided robotic systems, which obtained sub-millimeter accuracy. With this improved accuracy, we developed a corresponding surgical planning method for robotic automation. As a demonstration, we prototyped an autonomous electro-surgical robot that employed quantitative 3D structural reconstruction with near infrared registering and tissue classification methods to localize optimal targeting and suturing points for minimally invasive surgery. Results from validation of the cooperative control and registration between the vision system in a series of in vivo and in vitro experiments are presented and the potential enhancement to autonomous robotic minimally invasive surgery by utilizing our technique will be discussed
Impact of Novel Sorghum Bran Diets on DSS-Induced Colitis.
We have demonstrated that polyphenol-rich sorghum bran diets alter fecal microbiota; however, little is known regarding their effect on colon inflammation. Our aim was to characterize the effect of sorghum bran diets on intestinal homeostasis during dextran sodium sulfate (DSS)-induced colitis. Male Sprague-Dawley rats (N = 20/diet) were provided diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins) or Hi Tannin Black (both) sorghum bran. Colitis was induced (N = 10/diet) with three separate 48-h exposures to 3% DSS, and feces were collected. On Day 82, animals were euthanized and the colon resected. Only discrete mucosal lesions, with no diarrhea or bloody stools, were observed in DSS rats. Only bran diets upregulated proliferation and Tff3, Tgfβ and short chain fatty acids (SCFA) transporter expression after a DSS challenge. DSS did not significantly affect fecal SCFA concentrations. Bran diets alone upregulated repair mechanisms and SCFA transporter expression, which suggests these polyphenol-rich sorghum brans may suppress some consequences of colitis
Effects of Cannabis Use on Human Behavior, Including Cognition, Motivation, and Psychosis: A Review
With a political debate about the potential risks and benefits of cannabis use as a backdrop, the wave of legalization and liberalization initiatives continues to spread. Four states (Colorado, Washington, Oregon, and Alaska) and the District of Columbia have passed laws that legalized cannabis for recreational use by adults, and 23 others plus the District of Columbia now regulate cannabis use for medical purposes. These policy changes could trigger a broad range of unintended consequences, with profound and lasting implications for the health and social systems in our country. Cannabis use is emerging as one among many interacting factors that can affect brain development and mental function. To inform the political discourse with scientific evidence, the literature was reviewed to identify what is known and not known about the effects of cannabis use on human behavior, including cognition, motivation, and psychosis
Enhanced efficiency for better wastewater sludge hydrolysis conversion through ultrasonic hydrolytic pretreatment
© 2016 Taiwan Institute of Chemical Engineers The major requirements for accelerating the process of anaerobic digestion and energy production are breaking the structure of waste activated sludge (WAS), and transforming it into a soluble form suitable for biodegradation. This work investigated and analysed a novel bench-scale ultrasonic system for WAS disruption and hydrolysis using ultrasonic homogenization. Different commercial sonoreactors were used at low frequencies under a variety of operating conditions (intensity, density, power, sonication time, and total suspended solids) to evaluate the effects of the equipment on sludge hydrolysis and to generate new insights into the empirical models and mechanisms applicable to the real-world processing of wastewater sludge. A relationship was established between the operating parameters and the experimental data. Results indicated an increase in sonication time or ultrasonic intensity correlated with improved sludge hydrolysis rates, sludge temperature, and reduction rate of volatile solids (33.51%). It also emerged that ultrasonication could effectively accelerate WAS hydrolysis to achieve disintegration within 5–10 min, depending on the ultrasonic intensity. This study also determined multiple alternative parameters to increase the efficiency of sludge treatment and organic matter reduction, and establish the practicality of applying ultrasonics to wastewater sludge pretreatment
Electronic noses based on metal oxide nanowires: A review
Metal oxides are ideal for the fabrication of gas sensors: they are sensitive to many gases while allowing the device to be simple, tiny, and inexpensive. Nonetheless, their lack of selectivity remains a limitation. In order to achieve good selectivity in applications with many possible interfering gases, the sensors are inserted into an electronic nose that combines the signals from nonselective sensors and analyzes them with multivariate statistical algorithms in order to obtain selectivity. This review analyzes the scientific articles published in the last decade regarding electronic noses based on metal oxide nanowires. After a general introduction, Section 2 discusses the issues related to poor intrinsic selectivity. Section 3 briefly reviews the main algorithms that have hitherto been used and the results they can provide. Section 4 classifies the recent literature into fundamental research, agrifood, health, security. In Section 5, the literature is analyzed regarding the metal oxides, the surface decoration nanoparticles, the features that differentiate the sensors in a given array, the application for which the device was developed, the algorithm used, and the type of information obtained. Section 6 concludes by discussing the present state and points out the requirements for their use in real-world applications
Design and fabrication of effective gradient temperature sensor array based on bilayer SnO2/Pt for gas classification
Classification of different gases is important, and it is possible to use different gas sensors for this purpose. Electronic noses, for example, combine separated gas sensors into an array for detecting different gases. However, the use of separated sensors in an array suffers from being bulky, high-energy consumption and complex fabrication processes. Generally, gas sensing properties, including gas selectivity, of semiconductor gas sensors are strongly dependent on their working temperature. It is therefore feasible to use a single device composed of identical sensors arranged in a temperature gradient for classification of multiple gases. Herein, we introduce a design for simple fabrication of gas sensor array based on bilayer Pt/SnO2 for real-time monitoring and classification of multiple gases. The study includes design simulation of the sensor array to find an effective gradient temperature, fabrication of the sensors and test of their performance. The array, composed of five sensors, was fabricated on a glass substrate without the need of backside etching to reduce heat loss. A SnO2 thin film sensitized with Pt on top deposited by sputtering was used as sensing material. The sensor array was tested against different gases including ethanol, methanol, isopropanol, acetone, ammonia, and hydrogen. Radar plots and principal component analysis were used to visualize the distinction of the tested gases and to enable effective classification
Improving outcomes of preschool language delay in the community: protocol for the Language for Learning randomised controlled trial
BackgroundEarly language delay is a high-prevalence condition of concern to parents and professionals. It may result in lifelong deficits not only in language function, but also in social, emotional/behavioural, academic and economic well-being. Such delays can lead to considerable costs to the individual, the family and to society more widely. The Language for Learning trial tests a population-based intervention in 4 year olds with measured language delay, to determine (1) if it improves language and associated outcomes at ages 5 and 6 years and (2) its cost-effectiveness for families and the health care system. Methods/DesignA large-scale randomised trial of a year-long intervention targeting preschoolers with language delay, nested within a well-documented, prospective, population-based cohort of 1464 children in Melbourne, Australia. All children received a 1.25-1.5 hour formal language assessment at their 4th birthday. The 200 children with expressive and/or receptive language scores more than 1.25 standard deviations below the mean were randomised into intervention or ‘usual care’ control arms. The 20-session intervention program comprises 18 one-hour home-based therapeutic sessions in three 6-week blocks, an outcome assessment, and a final feed-back/forward planning session. The therapy utilises a ‘step up-step down’ therapeutic approach depending on the child’s language profile, severity and progress, with standardised, manualised activities covering the four language development domains of: vocabulary and grammar; narrative skills; comprehension monitoring; and phonological awareness/pre-literacy skills. Blinded follow-up assessments at ages 5 and 6 years measure the primary outcome of receptive and expressive language, and secondary outcomes of vocabulary, narrative, and phonological skills. DiscussionA key strength of this robust study is the implementation of a therapeutic framework that provides a standardised yet tailored approach for each child, with a focus on specific language domains known to be associated with later language and literacy. The trial responds to identified evidence gaps, has outcomes of direct relevance to families and the community, includes a well-developed economic analysis, and has the potential to improve long-term consequences of early language delay within a public health framework.<br /
Intrinsic ripples in graphene
The stability of two-dimensional (2D) layers and membranes is subject of a
long standing theoretical debate. According to the so called Mermin-Wagner
theorem, long wavelength fluctuations destroy the long-range order for 2D
crystals. Similarly, 2D membranes embedded in a 3D space have a tendency to be
crumpled. These dangerous fluctuations can, however, be suppressed by
anharmonic coupling between bending and stretching modes making that a
two-dimensional membrane can exist but should present strong height
fluctuations. The discovery of graphene, the first truly 2D crystal and the
recent experimental observation of ripples in freely hanging graphene makes
these issues especially important. Beside the academic interest, understanding
the mechanisms of stability of graphene is crucial for understanding electronic
transport in this material that is attracting so much interest for its unusual
Dirac spectrum and electronic properties. Here we address the nature of these
height fluctuations by means of straightforward atomistic Monte Carlo
simulations based on a very accurate many-body interatomic potential for
carbon. We find that ripples spontaneously appear due to thermal fluctuations
with a size distribution peaked around 70 \AA which is compatible with
experimental findings (50-100 \AA) but not with the current understanding of
stability of flexible membranes. This unexpected result seems to be due to the
multiplicity of chemical bonding in carbon.Comment: 14 pages, 6 figure
- …