337 research outputs found

    Magnetic domain-wall creep driven by field and current in Ta/CoFeB/MgO

    Get PDF
    Creep motion of magnetic domain wall (DW), thermally activated DW dynamics under subthreshold driving forces, is a paradigm to understand the interaction between driven interfaces and applied external forces. Previous investigation has shown that DW in a metallic system interacts differently with current and magnetic field, manifesting itself as different universality classes for the creep motion. In this article, we first review the experimental determination of the universality classes for current- and field-driven DW creeps in a Ta/CoFeB/MgO wire, and then elucidate the underlying factors governing the obtained results. We show that the nature of torque arising from current in association with DW configuration determines universality class for the current-induced creep in this system. We also discuss the correlation between the field-induced DW creep characteristics and structure observed by a transmission electron microscope. The observed results are expected to provide a deeper understanding for physics of DW motion in various magnetic materials

    Test chamber investigation of the volatilization from source materials of brominated flame retardants and their subsequent deposition to indoor dust

    Get PDF
    Numerous studies have reported elevated concentrations of brominated flame retardants (BFRs) in dust from indoor micro-environments. Limited information is available, however, on the pathways via which BFRs in source materials transfer to indoor dust. The most likely hypothesized pathways are (a) volatilization from the source with subsequent partitioning to dust, (b) abrasion of the treated product, transferring microscopic fibers or particles to the dust (c) direct uptake to dust via contact between source and dust. This study reports the development and application of an in-house test chamber for investigating BFR volatilization from source materials and subsequent partitioning to dust. The performance of the chamber was evaluated against that of a commercially available chamber, and inherent issues with such chambers were investigated, such as loss due to sorption of BFRs to chamber surfaces (so-called sink effects). The partitioning of polybrominated diphenyl ethers to dust, post-volatilization from an artificial source was demonstrated, while analysis in the test chamber of a fabric curtain treated with the hexabromocyclododecane formulation, resulted in dust concentrations exceeding substantially those detected in the dust pre-experiment. These results provide the first experimental evidence of BFR volatilization followed by deposition to dust

    Positive approximations of the inverse of fractional powers of SPD M-matrices

    Full text link
    This study is motivated by the recent development in the fractional calculus and its applications. During last few years, several different techniques are proposed to localize the nonlocal fractional diffusion operator. They are based on transformation of the original problem to a local elliptic or pseudoparabolic problem, or to an integral representation of the solution, thus increasing the dimension of the computational domain. More recently, an alternative approach aimed at reducing the computational complexity was developed. The linear algebraic system Aαu=f\cal A^\alpha \bf u=\bf f, 0<α<10< \alpha <1 is considered, where A\cal A is a properly normalized (scalded) symmetric and positive definite matrix obtained from finite element or finite difference approximation of second order elliptic problems in Ω⊂Rd\Omega\subset\mathbb{R}^d, d=1,2,3d=1,2,3. The method is based on best uniform rational approximations (BURA) of the function tβ−αt^{\beta-\alpha} for 0<t≤10 < t \le 1 and natural β\beta. The maximum principles are among the major qualitative properties of linear elliptic operators/PDEs. In many studies and applications, it is important that such properties are preserved by the selected numerical solution method. In this paper we present and analyze the properties of positive approximations of A−α\cal A^{-\alpha} obtained by the BURA technique. Sufficient conditions for positiveness are proven, complemented by sharp error estimates. The theoretical results are supported by representative numerical tests

    Ways to Reduce Water Erosion on Mountainous Slope Lands

    Get PDF
    The most important problem in the highland area is the development of technologies to reduce water erosion and improve soil fertility preservation. In order to restore degraded soils of slope lands, a number of measure is undertaken, among them planting crops across the slope and rational fertilizer treatment. To reduce erosion processes, mineral fertilizers were applied depending on the steepness of slope. High sections with the steepness of 9–10∘ received ammonium sulphate in a quantity of 60 kg/ha. Lower part of the slope with the steepness of 5–7∘ received ammonia nitrate as a nitrogen fertilizer in a quantity of 80 kg/ha, while the gentle sloping part with 2–5∘ had urea-formaldehyde fertilizer incorporated under winter tillage in a quantity of 50 kg/ha. At that, stripes were formed across the slope where tall-growing perennial herbs were planted: hill mustard (Bunias orentalis L.), silphium (Silphium perfaliatum), Eastern galega (Galeqa orientalis L.), cock’s foot grass (Dakfilis qlamerata L.). The research results have shown that thanks to fertilizers, yield of crops increases by a factor of 1.5–2, while soil losses reduced from 0.042 to 0.018 t/ha

    Polar Spinel-Perovskite Interfaces: an atomistic study of Fe3O4(111)/SrTiO3(111) structure and functionality

    Get PDF
    Atomic resolution scanning transmission electron microscopy and electron energy loss spectroscopy combined with ab initio electronic calculations are used to determine the structure and properties of the Fe3O4(111)/SrTiO3(111) polar interface. The interfacial structure and chemical composition are shown to be atomically sharp and of an octahedral Fe/SrO3 nature. Band alignment across the interface pins the Fermi level in the vicinity of the conduction band of SrTiO3. Density functional theory calculations demonstrate very high spin-polarization of Fe3O4 in the interface vicinity which suggests that this system may be an excellent candidate for spintronic applications

    Magnetic profile of proximity-coupled (Dy,Bi)2Te3/(Cr,Sb)2Te3 topological insulator heterostructures

    Get PDF
    Magnetic topological insulators (TIs) are an ideal playground for the study of novel quantum phenomena building on time-reversal symmetry-broken topological surface states. By combining different magnetic TIs in a heterostructure, their magnetic and electronic properties can be precisely tuned. Recently, we have combined high-moment Dy:Bi2Te3 with high transition temperature Cr:Sb2Te3 in a superlattice, and we found, using x-ray magnetic circular dichroism (XMCD), that long-range magnetic order can be introduced in the Dy:Bi2Te3 layers. Accompanying first-principles calculations indicated that the origin of the long-range magnetic order is a strong antiferromagnetic coupling between Dy and Cr magnetic moments at the interface extending over several layers. However, based on XMCD alone, which is either averaging over the entire thin-film stack or is surface-sensitive, this coupling scenario could not be fully confirmed. Here we use polarized neutron reflectometry, which is ideally suited for the detailed study of superlattices, to retrieve the magnetization in a layer- and interface-resolved way. We find that the magnetization is, in contrast to similar recent studies, homogeneous throughout the individual layers, with no apparent interfacial effects. This finding demonstrates that heterostructure engineering is a powerful way of controlling the magnetic properties of entire layers, with the effects of coupling reaching beyond the interface region
    • …
    corecore