453 research outputs found

    Effects of relative phase and interactions on atom-laser outcoupling from a double-well Bose-Einstein condensate: Markovian and non-Markovian dynamics

    Full text link
    We investigate aspects of the dynamics of a continuous atom-laser scheme based on the merging of independently formed atomic condensates. Our theoretical analysis covers the Markovian as well as the non-Markovian operational regimes, and is based on a semiclassical (mean-field) two-mode model. The role of the relative phase between the two condensates and the effect of interatomic interactions on the evolution of the trapped populations and the distribution of outcoupled atoms are discussed.Comment: to appear in J. Phys.

    Entanglement in the adiabatic limit of a two-atom Tavis-Cummings model

    Full text link
    We study the adiabatic limit for the sequential passage of atoms through a high-Q cavity, in the presence of frequency chirps. Despite the fact that the adiabatic approximation might be expected to fail, we were able to show that for proper choice of Stark-pulses this is not the case. Instead, a connection to the resonant limit is established, where the robust creation of entanglement is demonstrated. Recent developments in the fabrication of high-Q cavities allow fidelities for a maximally entangled state up to 97%.Comment: 12 pages, 5 figures, Submitted to Physica Scripta as part of the Proceedings of the 15th CEWQO 200

    Multiple electron trapping in the fragmentation of strongly driven molecules

    Full text link
    We present a theoretical quasiclassical study of the formation, during Coulomb explosion, of two highly excited neutral H atoms (double H∗^{*}) of strongly driven H2_2. In this process, after the laser field is turned off each electron occupies a Rydberg state of an H atom. We show that two-electron effects are important in order to correctly account for double H∗^{*} formation. We find that the route to forming two H∗^{*} atoms is similar to pathway B that was identified in Phys. Rev. A {\bf 85} 011402 (R) as one of the two routes leading to single H∗^{*} formation. However, instead of one ionization step being "frustrated" as is the case for pathway B, both ionization steps are "frustrated" in double H∗^{*} formation. Moreover, we compute the screened nuclear charge that drives the explosion of the nuclei during double H∗^{*} formation.Comment: 4 pages, 6 figure

    Dephasing effects on stimulated Raman adiabatic passage in tripod configurations

    Full text link
    We present an analytic description of the effects of dephasing processes on stimulated Raman adiabatic passage in a tripod quantum system. To this end, we develop an effective two-level model. Our analysis makes use of the adiabatic approximation in the weak dephasing regime. An effective master equation for a two-level system formed by two dark states is derived, where analytic solutions are obtained by utilizing the Demkov-Kunike model. From these, it is found that the fidelity for the final coherent superposition state decreases exponentially for increasing dephasing rates. Depending on the pulse ordering and for adiabatic evolution the pulse delay can have an inverse effect.Comment: 13 pages; 9 figures; Accepted for publication Physical Review

    Familial phenotype differences in PKD1111See Editorial, p. 344.

    Get PDF
    Familial phenotype differences in PKD1.BackgroundMutations within the PKD1 gene are responsible for the most common and most severe form of autosomal dominant polycystic kidney disease (ADPKD). Although it is known that there is a wide range of disease severity within PKD1 families, it is uncertain whether differences in clinical severity also occur among PKD1 families.MethodsTen large South Wales ADPKD families with at least 12 affected members were included in the study. From affected members, clinical information was obtained, including survival data and the presence of ADPKD-associated complications. Family members who were at risk of having inherited ADPKD but were proven to be non-affected were included as controls. Linkage and haplotype analysis were performed with highly polymorphic microsatellite markers closely linked to the PKD1 gene. Survival data were analyzed by the Kaplan–Meier method and the log rank test. Logistic regression analysis was used to test for differences in complication rates between families.ResultsHaplotype analysis revealed that each family had PKD1-linked disease with a unique disease-associated haplotype. Interfamily differences were observed in overall survival (P = 0.0004), renal survival (P = 0.0001), hypertension prevalence (P = 0.013), and hernia (P = 0.048). Individuals with hypertension had significantly worse overall (P = 0.0085) and renal (P = 0.03) survival compared with those without hypertension. No statistically significant differences in the prevalence of hypertension and hernia were observed among controls.ConclusionWe conclude that phenotype differences exist between PKD1 families, which, on the basis of having unique disease-associated haplotypes, are likely to be associated with a heterogeneous range of underlying PKD1 mutations

    Non-Markovian dynamics in atom-laser outcoupling from a double-well Bose-Einstein condensate

    Full text link
    We investigate the dynamics of a continuous atom laser based on the merging of independently formed atomic condensates. In a first attempt to understand the dynamics of the system, we consider two independent elongated Bose-Einstein condensates which approach each other and focus on intermediate inter-trap distances so that a two-mode model is well justified. In the framework of a mean-field theory, we discuss the quasi steady-state population of the traps as well as the energy distribution of the outcoupled atoms.Comment: 21 pages, 9 figure, to appear in J. Phys.

    Geriatric pharmacotherapy : optimisation through integrated approach in the hospital setting

    Get PDF
    Since older patients are more vulnerable to adverse drug-related events, there is a need to ensure appropriate prescribing in these patients in order to prevent misuse, overuse and underuse of drugs. Different tools and strategies have been developed to reduce inappropriate prescribing; the available measures can be divided into medication assessment tools, and speciïŹc interventions to reduce inappropriate prescribing. Implicit criteria of inappropriate prescribing focus on appropriate dosing, search for drug-drug interactions, and increase adherence. Explicit criteria are consensus-based standards focusing on drugs and diseases and include lists of drugs to avoid in general or lists combining drugs with clinical data. These criteria take into consideration differences between patients, and stand for a medication review, by using a systematic approach. Different types of interventions exist in order to reduce inappropriate prescribing in older patients, such as: educational interventions, computerized decision support systems, pharmacist-based interventions, and geriatric assessment. The effects of these interventions have been studied, sometimes in a multifaceted approach combining different techniques, and all types seem to have positive effects on appropriateness of prescribing. Interdisciplinary teamwork within the integrative pharmaceutical care is important for improving of outcomes and safety of drug therapy. The pharmaceutical care process consists offour steps, which are cyclic for an individual patient. These steps are pharmaceutical anamnesis, medication review, design and follow-up of a pharmaceutical care plan. A standardized approach is necessary for the adequate detection and evaluation of drug-related problems. Furthermore, it is clear that drug therapy should be reviewed in-depth, by having full access to medical records, laboratory values and nursing notes. Although clinical pharmacists perform the pharmaceutical care process to manage the patient’s drug therapy in every day clinical practice, the physician takes the ultimate responsibility for the care of the patient in close collaboration with nurses

    A Halomethane thermochemical network from iPEPICO experiments and quantum chemical calculations

    Get PDF
    Internal energy selected halomethane cations CH3Cl+, CH2Cl2+, CHCl3+, CH3F+, CH2F2+, CHClF2+ and CBrClF2+ were prepared by vacuum ultraviolet photoionization, and their lowest energy dissociation channel studied using imaging photoelectron photoion coincidence spectroscopy (iPEPICO). This channel involves hydrogen atom loss for CH3F+, CH2F2+ and CH3Cl+, chlorine atom loss for CH2Cl2+, CHCl3+ and CHClF2+, and bromine atom loss for CBrClF2+. Accurate 0 K appearance energies, in conjunction with ab initio isodesmic and halogen exchange reaction energies, establish a thermochemical network, which is optimized to update and confirm the enthalpies of formation of the sample molecules and their dissociative photoionization products. The ground electronic states of CHCl3+, CHClF2+ and CBrClF2+ do not confirm to the deep well assumption, and the experimental breakdown curve deviates from the deep well model at low energies. Breakdown curve analysis of such shallow well systems supplies a satisfactorily succinct route to the adiabatic ionization energy of the parent molecule, particularly if the threshold photoelectron spectrum is not resolved and a purely computational route is unfeasible. The ionization energies have been found to be 11.47 ± 0.01 eV, 12.30 ± 0.02 eV and 11.23 ± 0.03 eV for CHCl3, CHClF2 and CBrClF2, respectively. The updated 0 K enthalpies of formation, ∆fHo0K(g) for the ions CH2F+, CHF2+, CHCl2+, CCl3+, CCl2F+ and CClF2+ have been derived to be 844.4 ± 2.1, 601.6 ± 2.7, 890.3 ± 2.2, 849.8 ± 3.2, 701.2 ± 3.3 and 552.2 ± 3.4 kJ mol–1, respectively. The ∆fHo0K(g) values for the neutrals CCl4, CBrClF2, CClF3, CCl2F2 and CCl3F and have been determined to be –94.0 ± 3.2, –446.6 ± 2.7, –702.1 ± 3.5, –487.8 ± 3.4 and –285.2 ± 3.2 kJ mol–1, respectively
    • 

    corecore