150 research outputs found
A gravity model distribution of truck trips in two small cities
Call number: LD2668 .T4 1965 L42Master of Scienc
Levofloxacin Cures Experimental Pneumonic Plague in African Green Monkeys
Yersinia pestis is the causative agent of bubonic plague as well as a rare severe form known as primary pneumonic plague resulting from the inhalation of contaminated aerosols. The relative ease of aerosol preparation and high virulence makes Y. pestis a dangerous bioweapon. The current study describes the treatment of established pneumonic plague with the widely available, broad-spectrum fluoroquinolone antibiotic levofloxacin in a nonhuman primate model. African green monkeys inhaled a target dose of 100 lethal doses for 50% of animals (LD50) and were monitored for fever and vital signs by telemetry. Fever was the first sign of illness, correlating with bacteremia but preceding radiographic pneumonia, and initiated intravenous levofloxacin treatment in doses designed to mimic antibiotic levels achieved in humans. All animals treated with saline died and all animals completing 10 days of treatment survived, with resolution of high fever within 24β48 hours. We conclude that levofloxacin may be an appropriate broad-spectrum antibiotic for presumptive therapy in an aerosolized bioweapons attack and should be studied for treatment of bubonic plague
Recommended from our members
A model for simulating river and reservoir temperatures with applications for anadromous fish management
T Cells Specific for a Mycobacterial Glycolipid Expand after Intravenous Bacillus Calmette-GuΓ©rin Vaccination
Intradermal vaccination with Mycobacterium bovis bacillus Calmette-GuΓ©rin (BCG) protects infants from disseminated tuberculosis, and i.v. BCG protects nonhuman primates (NHP) against pulmonary and extrapulmonary tuberculosis. In humans and NHP, protection is thought to be mediated by T cells, which typically recognize bacterial peptide Ags bound to MHC proteins. However, during vertebrate evolution, T cells acquired the capacity to recognize lipid Ags bound to CD1a, CD1b, and CD1c proteins expressed on APCs. It is unknown whether BCG induces T cell immunity to mycobacterial lipids and whether CD1-restricted T cells are resident in the lung. In this study, we developed and validated Macaca mulatta (Mamu) CD1b and CD1c tetramers to probe ex vivo phenotypes and functions of T cells specific for glucose monomycolate (GMM), an immunodominant mycobacterial lipid Ag. We discovered that CD1b and CD1c present GMM to T cells in both humans and NHP. We show that GMM-specific T cells are expanded in rhesus macaque blood 4 wk after i.v. BCG, which has been shown to protect NHP with near-sterilizing efficacy upon M. tuberculosis challenge. After vaccination, these T cells are detected at high frequency within bronchoalveolar fluid and express CD69 and CD103, markers associated with resident memory T cells. Thus, our data expand the repertoire of T cells known to be induced by whole cell mycobacterial vaccines, such as BCG, and show that lipid Ag-specific T cells are resident in the lungs, where they may contribute to protective immunity
Physics-Based Stress Corrosion Cracking Component Reliability Model cast in an R7-Compatible Cumulative Damage Framework
This is a working report drafted under the Risk-Informed Safety Margin Characterization pathway of the Light Water Reactor Sustainability Program, describing statistical models of passives component reliabilities
A multi-level spectral deferred correction method
The spectral deferred correction (SDC) method is an iterative scheme for computing a higher-order collocation solution to an ODE by performing a series of correction sweeps using a low-order timestepping method. This paper examines a variation of SDC for the temporal integration of PDEs called multi-level spectral deferred corrections (MLSDC), where sweeps are performed on a hierarchy of levels and an FAS correction term, as in nonlinear multigrid methods, couples solutions on different levels. Three different strategies to reduce the computational cost of correction sweeps on the coarser levels are examined: reducing the degrees of freedom, reducing the order of the spatial discretization, and reducing the accuracy when solving linear systems arising in implicit temporal integration. Several numerical examples demonstrate the effect of multi-level coarsening on the convergence and cost of SDC integration. In particular, MLSDC can provide significant savings in compute time compared to SDC for a three-dimensional problem
Enhanced Immunogenicity, Mortality Protection, and Reduced Viral Brain Invasion by Alum Adjuvant with an H5N1 Split-Virion Vaccine in the Ferret
Pre-pandemic development of an inactivated, split-virion avian influenza vaccine is challenged by the lack of pre-existing immunity and the reduced immunogenicity of some H5 hemagglutinins compared to that of seasonal influenza vaccines. Identification of an acceptable effective adjuvant is needed to improve immunogenicity of a split-virion avian influenza vaccine.No serum antibodies were detected after vaccination with unadjuvanted vaccine, whereas alum-adjuvanted vaccination induced a robust antibody response. Survival after unadjuvanted dose regimens of 30 Β΅g, 7.5 Β΅g and 1.9 Β΅g (21-day intervals) was 64%, 43%, and 43%, respectively, yet survivors experienced weight loss, fever and thrombocytopenia. Survival after unadjuvanted dose regimen of 22.5 Β΅g (28-day intervals) was 0%, suggesting important differences in intervals in this model. In contrast to unadjuvanted survivors, either dose of alum-adjuvanted vaccine resulted in 93% survival with minimal morbidity and without fever or weight loss. The rarity of brain inflammation in alum-adjuvanted survivors, compared to high levels in unadjuvanted vaccine survivors, suggested that improved protection associated with the alum adjuvant was due to markedly reduced early viral invasion of the ferret brain.Alum adjuvant significantly improves efficacy of an H5N1 split-virion vaccine in the ferret model as measured by immunogenicity, mortality, morbidity, and brain invasion
Genome Sequences of Streptomyces Phages Amela and Verse
This article describes Amela and Verse, two Streptomyces phages isolated by enrichment on Streptomyces venezuelae (ATCC 10712) from two different soil samples
Exhaled Aerosol Transmission of Pandemic and Seasonal H1N1 Influenza Viruses in the Ferret
Person-to-person transmission of influenza viruses occurs by contact (direct and fomites) and non-contact (droplet and small particle aerosol) routes, but the quantitative dynamics and relative contributions of these routes are incompletely understood. The transmissibility of influenza strains estimated from secondary attack rates in closed human populations is confounded by large variations in population susceptibilities. An experimental method to phenotype strains for transmissibility in an animal model could provide relative efficiencies of transmission. We developed an experimental method to detect exhaled viral aerosol transmission between unanesthetized infected and susceptible ferrets, measured aerosol particle size and number, and quantified the viral genomic RNA in the exhaled aerosol. During brief 3-hour exposures to exhaled viral aerosols in airflow-controlled chambers, three strains of pandemic 2009 H1N1 strains were frequently transmitted to susceptible ferrets. In contrast one seasonal H1N1 strain was not transmitted in spite of higher levels of viral RNA in the exhaled aerosol. Among three pandemic strains, the two strains causing weight loss and illness in the intranasally infected βdonorβ ferrets were transmitted less efficiently from the donor than the strain causing no detectable illness, suggesting that the mucosal inflammatory response may attenuate viable exhaled virus. Although exhaled viral RNA remained constant, transmission efficiency diminished from day 1 to day 5 after donor infection. Thus, aerosol transmission between ferrets may be dependent on at least four characteristics of virus-host relationships including the level of exhaled virus, infectious particle size, mucosal inflammation, and viral replication efficiency in susceptible mucosa
- β¦