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Abstract The spectral deferred correction (SDC) method is an iterative scheme for com-

puting a higher-order collocation solution to an ODE by performing a series of correction

sweeps using a low-order timestepping method. This paper examines a variation of SDC for

the temporal integration of PDEs called multi-level spectral deferred corrections (MLSDC),

where sweeps are performed on a hierarchy of levels and an FAS correction term, as in non-

linear multigrid methods, couples solutions on different levels. Three different strategies to

reduce the computational cost of correction sweeps on the coarser levels are examined: re-
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ducing the degrees of freedom, reducing the order of the spatial discretization, and reducing

the accuracy when solving linear systems arising in implicit temporal integration. Several

numerical examples demonstrate the effect of multi-level coarsening on the convergence and

cost of SDC integration. In particular, MLSDC can provide significant savings in compute

time compared to SDC for a three-dimensional problem.

Keywords spectral deferred corrections · multi-level spectral deferred corrections · FAS

correction · PFASST

Mathematics Subject Classification (2000) 65M55 · 65M70 · 65Y05

1 Introduction

The numerical approximation of initial value ordinary differential equations is a fundamen-

tal problem in computational science, and many integration methods for problems of differ-

ent character have been developed [2,20,21]. Among different solution strategies, this paper

focuses on a class of iterative methods called Spectral Deferred Corrections (SDC) [16],

which is a variant of the defect and deferred correction methods developed in the 1960s [3,

15,35,36,42,46]. In SDC methods, high-order temporal approximations are computed over

a timestep by discretizing and approximating a series of correction equations on intermedi-

ate substeps. These corrections are applied iteratively to a provisional solution computed on

the substeps, with each iteration – or sweep – improving the solution and raising the formal

order of accuracy of the method, see e.g. [11,13,45]. The correction equations are cast in the

form of a Picard integral equation containing an explicitly calculated term corresponding to

the temporal integration of the function values from the previous iteration. Substeps in SDC

methods are chosen to correspond to Gaussian quadrature nodes, and hence the integrals can

be stably computed to a very high order of accuracy.

One attractive feature of SDC methods is that the numerical method used to approximate

the correction equations can be low-order (even first-order) accurate, while the solution af-

ter many iterations can in principal be of arbitrarily high-order of accuracy. This has been

exploited to create SDC methods that allow the governing equations to be split into two or

more pieces that can be treated either implicitly or explicitly and/or with different timesteps,

see e.g. [5,6,29,32].

For high-order SDC methods constructed from low-order propagators, the provisional

solution and the solution after the first few correction iterations are of lower-order compared

to the final solution. Hence it is possible to reduce the computational work done on these

early iterations by reducing the number of substeps (i.e. quadrature nodes) since higher-

order integrals are not yet necessary. In [30,32], the number of substeps used in initial iter-

ations of SDC methods is appropriately reduced to match the accuracy of the solution, and

the methods there are referred to as ladder methods. Ladder methods progress from a low-

order coarse solution to a high-order fine solution by performing one or more SDC sweeps

on the coarse level and then using an interpolated (in time and possibly space) version of

the solution as the provisional solution for the next correction sweep. In both [30,32] the

authors conclude that the reduction in work obtained by using ladder methods is essentially

offset by a corresponding decrease in accuracy, making ladder methods no more computa-

tionally efficient than non-ladder SDC methods. On the other hand, in [28], SDC methods

for a method of lines discretizations of PDEs are explored wherein the ladder strategy allows

both spatial and temporal coarsening as well as the use of lower-order spatial discretizations

in initial iterations. The numerical results in [28] indicate that adding spatial coarsening



A multi-level spectral deferred correction method 3

to SDC methods for PDEs can increase the overall efficiency of the timestepping scheme,

although this evidence is based only on numerical experiments using simple test cases.

This paper significantly extends the idea of using spatial coarsening in SDC when solv-

ing PDEs. A general multi-level strategy is analyzed wherein correction sweeps are applied

to different levels as in the V-cycles of multigrid methods (e.g. [7,8]). A similar strategy

is used in the parallel full approximation scheme in space and time (PFASST), see [18,34]

and also [39], to enable concurrency in time by iterating on multiple timesteps simultane-

ously. As in nonlinear multigrid methods, multi-level SDC applies an FAS-type correction

to enhance the accuracy of the solution on coarse levels. Therefore, some of the fine sweeps

required by a single-level SDC algorithm can be replaced by coarse sweeps, which are rel-

atively cheaper when spatial coarsening strategies are used. The paper introduces MLSDC

and discusses three such spatial coarsening strategies: (1) reducing the number of degrees of

freedom, (2) reducing the order of the discretization and (3) reducing the accuracy of implicit

solves. To enable the use of a high-order compact stencils for spatial operators, several mod-

ifications to SDC and MLSDC are presented that incorporate a weighting matrix. It is shown

for example problems in one and two dimensions that the number of MLSDC iterations re-

quired to converge to the collocation solution can be fewer than for SDC, even when the

problem is poorly resolved in space. Furthermore, results from a three-dimensional bench-

mark problem demonstrate that MLSDC can significantly reduce time-to-solution compared

to single-level SDC.

2 Multi-level spectral deferred corrections

The details of the MLSDC schemes are presented in this section. The original SDC method

is first reviewed in §2.1, while MLSDC along with a brief review of FAS corrections, the

incorporation of weighting matrices and a discussion of different coarsening strategies is

presented in §2.2.

2.1 Spectral deferred corrections

SDC methods for ODEs were first introduced in [16], and were subsequently refined and

extended e.g. in [22,24,32,33]. SDC methods iteratively compute the solution to the col-

location equation by approximating a series of correction equations at spectral quadrature

nodes using low-order substepping methods. The derivation of SDC starts from the Picard

integral form of a generic IVP given by

u(t) = u0 +
∫ t

0
f
(

u(s),s
)

ds (1)

where t ∈ [0,T ], u0,u(t) ∈ R
N , and f : RN ×R→ R

N . We now focus on a single timestep

[Tn,Tn+1], which is divided into substeps by defining a set of quadrature nodes on the in-

terval. Here we consider Lobatto quadrature and denote M+1 nodes ttt := (tm)m=0,...,M such

that Tn = t0 < t1 < .. . < tM = Tn+1. We now denote the collocation polynomial on [Tn,Tn+1]
by up(t) and write U j = up(t j) ≈ u(t j). In order to derive equations for the intermediate

solutions U j, we define quadrature weights

qm, j :=
1

∆ t

∫ tm

Tn

l j(s) ds, m = 0, . . . ,M, j = 0, . . . ,M (2)
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where (l j) j=0,...,M are the Lagrange polynomials defined by the nodes ttt, and ∆ t = TN+1−TN .

Inserting up(t) into (1) and noting that the quadrature with weights defined in (2) integrates

the polynomial up(t) exactly, we obtain

Um = u0 +∆ t
M

∑
j=0

qm, j f (U j, t j), m = 0, . . . ,M. (3)

For a more compact notation, we now define the integration matrix qqq to be the M+1×M+1

matrix consisting of entries qm, j. Note that because we use Gauss-Lobatto nodes, the first

row of qqq is all zeros. Next, we denote

UUU := [U0, . . . ,UM]T ,

and

FFF(UUU) := [F0, . . . ,FM]T := [ f (U0, t0), . . . , f (UM, tM)]T .

In order to multiply the integration matrix qqq with the vector of the right-hand side values, we

define QQQ := qqq⊗ IIIN where IIIN ∈R
N×N is the identity matrix and ⊗ is the Kronecker product.

With these definitions, the set of equations in (3) can be written more compactly as

UUU =UUU0 +∆ t QQQFFF(UUU)

where UUU0 := U0⊗ IIIN . Eq. (4) is an implicit equation for the unknowns in UUU , and is also

referred to as the collocation formulation. Because we use Gauss-Lobatto nodes, the value

UM readily approximates the solution u(Tn+1).
Here, we consider ODEs that can be split into stiff ( f I) and non-stiff ( f E ) pieces so that

f (u(t), t) = f E
(

u(t), t
)

+ f I
(

u(t), t
)

.

SDC iterations begin by spreading the initial condition U0 to each of the collocation nodes

so that the provisional solution UUU0 is given by UUU0 = [U0, · · · ,U0]. We define by

sm, j :=
1

∆ t

∫ tm

tm−1

l j(s) ds, m = 1, . . . ,M

the quadrature weights for node-to-note integration, approximating integrals over [tm−1, tm],
and as sss the M×M +1 matrix consisting of the entries sm, j. Note that sss can be easily con-

structed from the integration matrix qqq. Furthermore, we denote as before SSS := sss⊗ IIIN . Then,

the semi-implicit update equation corresponding to the forward/backward Euler substepping

method for computing UUUk+1 is given by

Uk+1
m+1 =Uk+1

m +∆ tm
[

f E(Uk+1
m , tm)− f E(Uk

m, tm)
]

+∆ tm
[

f I(Uk+1
m+1, tm+1)− f I(Uk

m+1, tm+1)
]

+∆ t Sk
m (4)

where Sk
m is the mth row of SSSFFF(UUUk) and ∆ tm := tm+1− tm. The process of solving (4) at each

node is referred to as an SDC sweep or an SDC iteration (see Algorithm 1). SDC with a fixed

number of k iterations and first-order sweeps is formally O(∆ tk) up to the accuracy of the

underlying integration rule [12,45]. When SDC iterations converge, the scheme becomes

equivalent to the collocation scheme determined by the quadrature nodes, and hence is of

order 2M with M+1 Lobatto nodes.

It has been shown [24,30] that in certain situations (particularly stiff equations) the

convergence of SDC iterates can slow down considerably for large values of ∆ t. For a fixed
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Algorithm 1: IMEX SDC sweep algorithm.

Data: Initial U0, function evaluations FFF(UUUk) from the previous iteration, and (optionally) FAS

corrections τττ .

Result: Solution UUUk+1 and function evaluations FFF(UUUk+1).

# Compute integrals

for m = 0 . . .M−1 do

Sk
m←− ∆ t ∑

M
j=0 sm, j(F

E,k
j +F

I,k
j )

end

# Set initial condition and compute function evaluation

t←− t0; Uk+1
0 ←−U0

F
E,k+1
0 ←− f E (U0, t)

F
I,k+1
0 ←− f I(U0, t)

# Forward/backward Euler substepping for correction

for m = 0 . . .M−1 do

t←− t +∆ tm

RHS←−Uk+1
m +∆ tm

(

F
E,k+1
m −F

E,k
m −F

I,k
m+1

)

+Sk
m + τm

Uk+1
m+1←− Solve

(

U−∆ tm f I(U, t) = RHS
)

for U

F
E,k+1
m+1 ←− f E (Uk+1

m+1, t)

F
I,k+1
m+1 ←− f I(Uk+1

m+1, t)

end

The FAS correction, denoted by τττ , is included here to ellucidate how FAS corrections derived in §2.2 are

incorporated into an SDC sweep – for plain, single level SDC algorithms the FAS correction τττ would be

zero.

number of iterations, this lack of convergence is characterized by order reduction. Hence in

this study, to allow for a reasonable comparison of SDC and MLSDC, we perform iterations

until a specified convergence criterion is met. Convergence is monitored by computing the

SDC residual

rrrk =UUU0 +∆ tQQQFFF(UUUk)−UUUk, (5)

and the iteration is terminated when the norm of the residual drops below a prescribed tol-

erance. Similary, if SDC or MLSDC are used to solve the collocation problem up to some

fixed tolerance, one also observes a significant increase in the number of iterations required

to reach a set tolerance. Accelerating the convergence of SDC for stiff problems has been

studied in e.g. [25,44].

2.2 Multi-level spectral deferred corrections

In multi-level SDC (MLSDC), SDC sweeps are performed on a hierarchy of discretiza-

tions or levels to solve the collocation equation (4). This section presents the details of the

MLSDC iterations for a generic set of levels, and in Sect. 2.2.4, three different coarsening

strategies are explored. For the following, we define levels ℓ = 1 . . .L, where ℓ = 1 is the

discretization that is to be solved (referred to generically as the fine level), and subsequent

levels ℓ= 2 . . .L are defined by successive coarsening of a type to be specified later.

2.2.1 FAS correction

Solutions on different MLSDC levels are coupled in the same manner as used in the full

approximation scheme (FAS) for nonlinear multigrid methods (see e.g. [7]). The FAS cor-
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rection for coarse SDC iterations is determined by considering SDC as an iterative method

for solving the collocation formulation (4), where the operators Aℓ are given by Aℓ(UUU ℓ) ≡
UUU ℓ−∆ tQQQℓFFFℓ(UUU ℓ). Note that the approximations Aℓ of the operator A can differ substantially

between levels as will be discussed in §2.2.4. Furthermore, we assume that suitable restric-

tion (denote by R) and interpolation operators between levels are available, see §2.2.5. The

FAS correction for coarse-grid sweeps is then given by

τττℓ+1 = Aℓ+1(RUUU ℓ)−RAℓ(UUU ℓ) = ∆ t
(

RQQQℓFFFℓ(UUU ℓ)−QQQℓ+1FFFℓ+1(RUUU ℓ)
)

. (6)

In particular, if the fine residual is zero (i.e., UUU ℓ ≡UUU0,ℓ+∆ tQQQℓFFFℓ(UUU ℓ)) the FAS-corrected

coarse equation becomes

UUU ℓ+1−∆ tQQQℓ+1FFFℓ+1(UUU ℓ+1) = RUUU0,ℓ+∆ t
(

RQQQℓFFFℓ(UUU ℓ)−QQQℓ+1FFFℓ+1(RUUU ℓ)
)

= RUUU ℓ−∆ tQQQℓ+1FFFℓ+1(RUUU ℓ)

so that the coarse solution is the restriction of the fine solution. Note that for multi-level

schemes, FAS-corrections from finer levels need to be restricted and incorporated to coarser

levels as well, i.e. if on level ℓ the equation is already corrected by τττℓ with

Aℓ(UUU ℓ) =UUU ℓ−∆ tQQQℓFFFℓ(UUU ℓ)− τττℓ,

the correction τττℓ+1 for level ℓ+1 is then given by

τττℓ+1 = Aℓ+1(RUUU ℓ)−RAℓ(UUU ℓ) = ∆ t
(

RQQQℓFFFℓ(UUU ℓ)−QQQℓ+1FFFℓ+1(RUUU ℓ)
)

+Rτττℓ.

Coarse levels thus include the FAS corrections of all finer levels.

2.2.2 The MLSDC algorithm

The MLSDC scheme introduced here proceeds as follows. The initial condition U0 and its

function evaluation are spread to each of the collocation nodes on the finest level so that the

first provisional solution UUU0
1 is given by

UUU0
1 = [U0, . . . ,U0].

A single MLSDC iteration then consists of the following steps:

1. Perform one fine SDC sweep using the values UUUk
1 and FFF1(UUU

k
1). This will yield provi-

sional updated values UUUk+1
1 and FFF1(UUU

k+1
1 ).

2. Sweep from fine to coarse: for each ℓ= 2 . . .L:

(a) Restrict the fine values UUUk+1
ℓ−1 to the coarse values UUUk

ℓ and compute FFFℓ(UUU
k
ℓ).

(b) Compute the FAS correction τττk
ℓ using FFFℓ−1(UUU

k+1
ℓ−1), FFFℓ(UUU

k
ℓ), and τττk

ℓ−1 (if available).

(c) Perform nℓ SDC sweeps with the values on level ℓ beginning with UUUk
ℓ , FFFℓ(UUU

k
ℓ) and

the FAS correction τττk
ℓ . This will yield new values UUUk+1

ℓ and FFFℓ(UUU
k+1
ℓ ).

3. Sweep from coarse to fine: for each ℓ= L−1 . . .1:

(a) Interpolate coarse grid correction UUUk+1
ℓ+1−RUUUk+1

ℓ and add to UUUk+1
ℓ . Recompute new

values FFFℓ(UUU
k+1
ℓ )

(b) If ℓ > 1, perform nℓ SDC sweeps beginning with values UUUk+1
ℓ , FFFℓ(UUU

k+1
ℓ ) and the

FAS correction τττk
ℓ . This will once again yield new values UUUk+1

ℓ and FFFℓ(UUU
k+1
ℓ ).
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Algorithm 2: MLSDC iteration for L levels.

Data: Initial Uk
1,0 and function evaluations FFFk

1 from the previous iteration on the fine level.

Result: Solution UUUk+1
ℓ and function evaluations FFFk+1

ℓ on all levels.

# Perform fine sweep and check convergence criteria

UUUk+1
1 , FFFk+1

1 ←− SDCSweep
(

UUUk
1, FFFk

1

)

if fine level has converged then

return

end

# Cycle from fine to coarse

for ℓ= 1 . . .L−1 do

# Restrict, re-evaluate, and save restriction (used later during interpolation)

for m = 0 . . .M do

Uk
ℓ+1,m←− Restrict

(

Uk+1
ℓ,m

)

Fk
ℓ+1,m←− FEval

(

Uk+1
ℓ+1,m

)

Ũk
ℓ+1,m←−Uk

ℓ+1,m

end

# Compute FAS correction and sweep

τττℓ+1←− FAS
(

FFFk+1
ℓ , FFFk

ℓ+1, τττℓ
)

UUUk+1
ℓ+1 , FFFk+1

ℓ+1 ←− SDCSweep
(

UUUk
ℓ+1, FFFk

ℓ+1, τττℓ+1

)

end

# Cycle from coarse to fine

for ℓ= L−1 . . .2 do

# Interpolate coarse correction and re-evaluate

for m = 0 . . .M do

Uk+1
ℓ,m ←−Uk+1

ℓ,m + Interpolate
(

Uk+1
ℓ+1,m−Ũk

ℓ+1,m

)

Fk+1
ℓ,m ←− FEval

(

Uk+1
ℓ,m

)

end

UUUk+1
ℓ , FFFk+1

ℓ ←− SDCSweep
(

UUUk+1
ℓ , FFFk+1

ℓ , τττℓ
)

end

# Return to finest level before next iteration

for m = 0 . . .M do

Uk+1
1,m ←−Uk+1

1,m + Interpolate
(

Uk+1
2,m −Ũk

2,m

)

Fk+1
1,m ←− FEval

(

Uk+1
1,m

)

end

Note that when interpolating from coarse to fine levels the correction UUUk+1
ℓ+1 − RUUUk

ℓ+1 is

interpolated and subsequently added to UUUk+1
ℓ instead of simply overwriting the fine values

with interpolated coarse values. Also note that instead of interpolating solution values UUUk+1
ℓ+1

to UUUk+1
ℓ and immediately re-evaluating the function values FFFℓ(UUU

k+1
ℓ ), the change in the

function values can be interpolated as well. Doing so reduces the cost of the interpolation

step, but possibly at the cost of increasing the number of MLSDC iterations required to

reach convergence. Since no significant increase could be observed during our tests, we skip

the re-evaluation of the right-hand side and use interpolation of the coarse function values

throughout this work. The above is summarized by Algorithm 2.
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2.2.3 Semi-implicit MLSDC with compact stencils

In order to achieve higher-order accuracy with finite difference discretizations in space, the

use of Mehrstellen discretizations is a common technique especially when using multigrid

methods [43]. While the straightforward use of larger stencils leads to larger matrix band-

widths and higher communication costs during parallel runs, high-order compact schemes

allow for high-order accuracy with stencils of minimal extent [41]. The compact stencil for a

given discretization is obtained by approximating the leading order error term by a finite dif-

ference approximation of the right-hand side, resulting in a weighting matrix. Discretizing

e.g. the heat equation ut = ∇2u in space1 yields

Wut = Au

with system matrix A and weighting matrix W . Formally, the discrete Laplacian is given by

W−1A. Using this approach, a fourth-order approximation of the Laplacian can be achieved

using only nearest neighbors (three-point stencil in 1D, nine-point-stencil in 2D, 19-point

stencil in 3D). For further reading on compact schemes we refer to [31,41,43].

The presence of a weighting matrix requires some modifications to MLSDC. We start

with the semi-implicit SDC update equation (4) given by

Uk+1
m+1 =Uk+1

m +∆ tm
[

f E(Uk+1
m , tm)− f E(Uk

m, tm)
]

+∆ tm
[

f I(Uk+1
m+1, tm)− f I(Uk

m+1, tm)
]

+∆ t Sk
m. (7)

Next, we assume a linear, autonomous implicit part f I(U, t) = f I(U) =W−1AU for a spatial

vector U with sparse matrices W and A stemming from the discretization of the Laplacian

with compact stencils. Furthermore, we define

f̃ I(U) = AU

so that

f̃ I(U) =W f I(U). (8)

With these definitions (7) becomes

(

I−∆ tm W−1A
)

Uk+1
m+1 =Uk+1

m +∆ tm
[

f E(Uk+1
m , tm)− f E(Uk

m, tm)
]

−∆ tm W−1AUk
m+1 +∆ t Sk

m.

Since the operator
(

I−∆ tm W−1A
)

is not sparse, we avoid computing with it by multiplying

the equation above by W , so that

(W −∆ tm A)Uk+1
m+1 =WUk+1

m +∆ tmW
[

f E(Uk+1
m , tm)− f E(Uk

m, tm)
]

−∆ tm f̃ I(Uk
m+1)+∆ t S̃k

m (9)

where S̃k
m now represents the mth row of SSSF̃FF

k
(UUUk), using W f E(Uk

m, tm) and f̃ I(Uk
m) instead

of f E(Uk
m, tm) and f I(Uk

m) as integrands, that is S̃k
m = ∑

M
j=0 sm, j

(

W f E(Uk
j , t j)+ f̃ I(Uk

j )
)

.

1 We adopt here and in the upcoming examples the following notation: Solutions of PDEs are denoted

with an underline, e.g. u, and depend continuously on one or more spatial variables and a time variable.

Discretizing a PDE in space by the method of lines results in an IVP with dimension N equal to the degrees

of freedom of the spatial discretization. The solution of such an IVP is a vector-valued function denoted by a

lower case letter, e.g. u, and depends continuously on time. The numerical approximation of u at some point

in time tm is denoted by a capital letter, e.g. Uk
m, where k corresponds to the iteration number.
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While this equation avoids the inversion of W , the computation of the residual does not.

By equation (5), the mth component of the residual at iteration k reads either

rk
m =U0 +∆ t

(

QQQFFF(UUUk)
)

m
−Uk

m,

or, after multiplication with W ,

Wrk
m =WU0 +∆ t

(

QQQF̃FF(UUUk)
)

m
−WUk

m.

Both equations require the solution of a linear system with matrix W , either to compute the

components of FFF(UUUk) from (8) or to retrieve rk
m from Wrk

m. Note that the subscript m denotes

here the mth column. Thus, we either need to obtain rk
m from Wrk

m (in case W f E is stored

during the SDC sweep) or f I from f̃ I (in case f E is stored). In either case, solving a linear

system with the weighting matrix becomes inevitable for the computation of the formally

correct residual.

Furthermore, evaluating (6) for the FAS correction also requires the explicit use of f E

and f I = W−1 f̃ I to compute RQQQℓFFFℓ(UUU ℓ). Moreover, from (9) we note that weighted SDC

sweeps on coarse levels ℓ+ 1 require the computation of Wℓ+1τℓ+1,m on all coarse nodes

tttℓ so that QQQℓ+1FFFℓ+1(RUUU ℓ) can be replaced by QQQℓ+1F̃FFℓ+1(RUUU ℓ). For spatial discretizations

in which both parts f E and f I of the right-hand side make use of weighting matrices W E

and W I or e.g. for finite element discretizations with a mass matrix, we note that similar

modifications to the MLSDC scheme as presented here must be made. The investigation of

MLSDC for finite element discretizations is left for future work.

2.2.4 Coarsening strategies

The goal in MLSDC methods is to reduce the total cost of the method by performing SDC

sweeps on coarsened levels at reduced computational cost. In this section we describe the

three types of spatial coarsening used in the numerical examples:

1. REDUCED RESOLUTION IN SPACE: Use fewer degrees of freedom for the spatial rep-

resentation (e.g. nodes, cells, points, particles, etc.) on the coarse levels. This directly

translates into significant computational savings for evaluations of f , particularly for

3D problems. This approach requires spatial interpolation and restriction operators to

transfer the solution between levels.

2. REDUCED ORDER IN SPACE: Use a spatial discretization on the coarse levels that is of

reduced order. Lower-order finite difference stencils, for example, are typically cheaper

to evaluate than higher-order ones, see [37] for an application of this strategy for the

time-parallel Parareal method.

3. REDUCED IMPLICIT SOLVE IN SPACE: Use only a few iterations of a spatial solver in

every substep, if an implicit or implicit-explicit method is used in the SDC sweeps. By

not solving the linear or nonlinear system in each SDC substep to full accuracy, savings

in execution time can be achieved.

We note that a fourth possibility not pursued here is to use a simplified physical repre-

sentation of the problem on coarse levels. This approach requires a detailed understanding

of the problem to derive suitable coarse level models and appropriate coarsening and inter-

polation operators. Similar ideas have been studied for Parareal in [14,23].
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The spatial coarsening strategies outlined above can significantly reduce the cost of

a coarse level SDC substep, but do not affect the number of substeps used. In principle,

it is also possible to reduce the number of quadrature nodes on coarser levels as in the

ladder schemes mentioned in the introduction. In this paper, no such temporal coarsening

is applied and we focus on the application of spatial coarsening strategies which leads to a

large reduction of the runtime for coarse level sweeps.

2.2.5 Transfer operators

In order to apply Strategy 1 and reduce the number of spatial degrees of freedom, transfer

operators between different levels are required. In the tests presented here that are based on

finite difference discretizations on simple cartesian meshes, the spatial degrees of freedom

are aligned, so that simple injection can be used for restriction.

We have observed that the order of the used spatial interpolation has a strong impact

on the convergence of MLSDC. While global information transfer when using e.g. spec-

tral methods does not influence the convergence properties of MLSDC, the use of local

Lagrangian interpolation for finite difference stencils has to be applied with care. In numer-

ical experiments not documented here, MLSDC with simple linear interpolation required

twice as many iterations as MLSDC with fifth-order spatial interpolation. Further, low res-

olutions in space combined with low-order interpolation led to significant degradation of

the convergence speed of MLSDC, while high spatial resolutions were much less sensitive.

Throughout the paper, Strategy 1 is applied with third-order Lagrangian interpolation, which

has proven to be sufficient in all cases studied here.

We note that the transfer operators would be different if e.g. finite elements were used

and operators between element spaces of different order and/or on different meshes would

be required.

2.2.6 Stability of SDC and MLSDC

Stability domains for SDC are presented in e.g. [16]. The stability of semi-implicit SDC is

addressed in [32] and the issue of order reduction for stiff problems is discussed. Split SDC

methods are further analyzed theoretically and numerically in [19]. A stability analysis for

MLSDC is complicated by the fact that it would need to consider the effects of the different

spatial coarsening strategies laid out in 2.2.4. Therefore, it cannot simply use Dahlquist’s

test equation but has to resort to some well-defined PDE examples in order to assess sta-

bility. Hence, for MLSDC the results presented here are experimental but development of a

theory for the convergence properties of MLSDC is ongoing work. However, in all examples

presented below, stability properties of SDC and MLSDC appeared to be comparable, but a

comprehensive analysis is left for future work.

3 Numerical Examples

In this section we investigate the performance of MLSDC for four numerical examples. First,

in order to demonstrate that the FAS correction in MLSDC is not unusable for hyperbolic

problems per se, performance for the 1D wave equation is studied in §3.1. To investigate

performance for a nonlinear problem, MLSDC is then applied to the 1D viscous Burgers’

equation in §3.2. A detailed investigation of different error components is given and we
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verify that the FAS corrections allow the solutions on coarse levels to converge to the ac-

curacy determined by the discretization on the finest level. The 2D Navier-Stokes equations

in vorticity-velocity form are solved in §3.3, showing again a reduction of the number of

required iterations by MLSDC, although using a coarsened spatial resolution is found to

have a negative impact on convergence, if the fine level is already under-resolved. In §3.4,

a FORTRAN implementation of MLSDC is applied to the three-dimensional Burgers’ equa-

tion and it is demonstrated that the reduction in fine level sweeps translates into a significant

reduction of computing time. Throughout all examples, we make use of a linear geomet-

ric multigrid solver [10,43] with JOR relaxation in 3D and SOR relaxation 1D and 2D as

smoothers, to solve the linear problems in the implicit part as well as to solve the linear

system with the weighting matrix for the residual and the FAS correction. The parallel im-

plementation of the multigrid solver used for the last example is described in [4].

In the examples below, we compare the number of sweeps on the fine and most expensive

level required by SDC or MLSDC to converge up to a set tolerance. For SDC, which sweeps

only on the fine level, this number is identical to the number of iterations. For MLSDC,

each iteration consists of one cycle through the level hierarchy, starting from the finest level,

going up to the coarsest and then down again, with one SDC sweep on each level on the

way up and down, cf. Algorithm 2. Except for the last iteration, the final fine sweep is also

the first fine sweep of the next iteration, so that for MLSDC the number of fine sweeps is

equal to the number of iterations plus one. Note that a factor of two coarsening in the spatial

resolution in each dimension yields a factor of eight reduction in degrees of freedom in three

dimensions, which makes coarse level sweeps significantly less expensive.

3.1 Wave equation

For spatial multigrid, the FAS formalism is mostly derived and analyzed for stationary ellip-

tic or parabolic problems, although there are examples of applications to hyperbolic prob-

lems as well [1,38]. Here, as a first test, we investigate the performance of MLSDC for a

simple 1D wave equation to verify that the FAS procedure as used in MLSDC does not break

down for a hyperbolic problem per se. The problem considered here, with the wave equation

written as a first order system, reads

ut(x, t)+ vx(x, t) = 0

vt(x, t)+ux(x, t) = 0

on x ∈ [0,1] with periodic boundary conditions and

u(x,0) = exp

(

−
1

2

(

x−0.5

0.1

)2
)

, v(x,0) = 0

for 0 ≤ t ≤ T . For the spatial derivatives, centered differences of 4th order with 128 points

are used on the fine level and of 2nd order with 64 points on the coarse. Both SDC and

MLSDC perform 40 timesteps of length ∆ t = 0.025 to integrate up to T = 1.0 and iterations

on each step are performed until
∥

∥rrrk
∥

∥

∞
≤ 5×10−8. The average number of fine level sweeps

over all steps for SDC and MLSDC is shown in Table 1 for three different values of M. In

all cases, MLSDC leads to savings in terms of required fine level sweeps. We note that for

a fine level spatial resolution of only 64 points, using spatial coarsening has a significant

negative effect on the performance of MLSDC (not documented here): This suggests that

for a problem which is spatially under-resolved on the finest level, further coarsening the

spatial resolution within MLSDC might hurt performance, see also §3.3.
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M SDC MLSDC(1,2)

3 18.5 11.1

5 17.6 10.6

7 14.3 8.2

Table 1: Average number of fine level sweeps over all time-steps of SDC and MLSDC for the wave equation

example to reach a residual of
∥

∥rrrk
∥

∥

∞
≤ 5× 10−8. The numbers in parentheses after MLSDC indicate the

used coarsening strategies, see §2.2.4.

3.2 1D viscous Burgers’ equation

In this section we investigate the effect of coarsening in MLSDC by considering the nonlin-

ear viscous Burgers’ equation

ut +u ·ux = νuxx, x ∈ [−1,1], t ∈ [0, tend]

u(x,0) = u0(x) (10)

u(−1, t) = u(1, t),

with ν > 0 and initial condition

u0(x) = exp

(

−
x2

σ2

)

, σ = 0.1

corresponding to a Gaussian peak strongly localized around x = 0. We denote the evaluation

of the continuous function u on a given spatial mesh with points (xi)i=1,...,N with a subscript

N, so that

uN(t) := (u(xi, t))i=1,...,N ∈ R
N .

Discretization of (10) in space then yields an initial value problem

ut(t) = fN(u(t)), u(t) ∈ R
N , t ∈ [0, tend]

u(0) = u0
N (11)

with solution u. Finally, we denote by UN,M,∆ t,k ∈ R
N the result of solving (11) with k

iterations of MLSDC using a timestep of ∆ t, M substeps (or M + 1 Lobatto collocation

nodes), and an N-point spatial mesh on the finest level over one time step.

Two runs are performed here, solving (10) with ν = 1.0 and ν = 0.1 with a single

MLSDC timestep tend = ∆ t = 0.01. MLSDC with two levels with 7 Gauss-Lobatto collo-

cation points is used with a spatial mesh of N = 256 points on the fine level, and N = 128

on the coarse level (Strategy 1). The advective term is discretized using a 5th-order WENO

finite difference method [27] on the fine level and a simple 1st-order upwind scheme on the

coarse level. For the Laplacian, a 4th-order compact stencil is used on the fine level and a

2nd-order stencil is used on the coarse level (Strategy 2). The advective term is treated ex-

plicitly while the diffusion term is treated implicitly. The resulting linear system is solved

using a linear multigrid solver with a tolerance of 5× 10−14 on the fine level but solved

only approximately using a single V-cycle on the coarse level (Strategy 3). A fixed number

of K = 80 MLSDC iterations is performed here without setting a tolerance for the MLSDC

residual.

In order to assess the different error components, a reference PDE solution uN(∆ t) is

computed with a single-level SDC scheme on a mesh with N = 1,024 points using M+1= 9

and ∆ t = 10−4. An ODE solution u(∆ t) is computed by running single-level SDC using
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M+1 = 9, ∆ t = 10−4 and the same spatial discretization as on the fine level of the MLSDC

run. Finally, the collocation solution ucoll(∆ t) is computed by performing 100 iterations of

single-level SDC with M + 1 = 7 and again the same spatial discretization as the MLSDC

fine level. Reference ODE and collocation solutions are computed for the coarse level using

the same parameters and the MLSDC coarse level spatial discretization.

3.2.1 Error components in MLSDC

The relative error of the fully discrete MLSDC solution to the analytical solution u of the

PDE (10) after a single timestep of length ∆ t is given by

εPDE :=

∥

∥uN(∆ t)−UN,M,∆ t,k

∥

∥

‖uN(∆ t)‖
, (12)

where ‖·‖ denotes some norm on R
N . All errors are hereafter reported using the maximum

norm ‖·‖∞. The error εPDE includes contributions from three sources

εN :=
‖uN(∆ t)−u(∆ t)‖

‖uN(∆ t)‖
≈ (i) – relative spatial error,

ε∆ t :=

∥

∥u(∆ t)−ucoll(∆ t)
∥

∥

‖uN(∆ t)‖
≈ (ii) – relative temporal error,

εcoll :=

∥

∥ucoll(∆ t)−UN,M,∆ t,k

∥

∥

‖uN(∆ t)‖
≈ (iii) – iteration error,

with ucoll denoting the exact solution of the collocation equation (4). Here, (i) is the spatial

discretization error; (ii) is the temporal discretization error, which is the error from replacing

the analytical Picard formulation (1) with the discrete collocation problem (4); and (iii) is

the error from solving the collocation equation approximately using the MLSDC iteration.

The PDE error (12) can be estimated using the triangle inequality according to

εPDE ≤ εN + ε∆ t + εcoll.

In addition to the PDE error, we define the error between the MLSDC solution and the

analytical solution of the semi-discrete ODE (11) as

εODE :=

∥

∥u(∆ t)−UN,M,∆ t,k

∥

∥

‖uN(∆ t)‖
≤ ε∆ t + εcoll. (13)

Note that εODE contains contributions from (ii) and (iii), and once the MLSDC iteration has

converged, error (13) reduces to the error arising from replacing the exact Picard integral (1)

by the collocation formula (4).

The three different error components of MLSDC, εPDE, εODE and εcoll are expected to

saturate at different levels as k→ ∞ according to

εPDE→max{εN ,ε∆ t},

εODE→ ε∆ t , and

εcoll→ 0.

The crucial point here is that due to the presence of the FAS correction included in MLSDC,

we expect εPDE, εODE and εcoll on all levels to saturate at values of εN and ε∆ t determined by

the discretization used on the finest level. That is, the FAS correction should allow MLSDC

to represent the solution on all coarse levels to the same accuracy as on the finest level. This

is verified in §3.2.2.
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ν = 0.1 ν = 1.0

Method # Fine sweeps Method # Fine sweeps

SDC 4 SDC 12

MLSDC 3 MLSDC 7

Table 2: Number of fine level sweeps required to reach a residual of
∥

∥rrrk
∥

∥

∞
≤ 10−5 for SDC and multi-level

SDC for Burgers’ equation with ν = 0.1 and ν = 1.0.

3.2.2 Convergence of MLSDC on all levels

Figure 1 shows the three error components εPDE (green squares), εODE (blue diamonds) and

εcoll (red circles) for ν = 0.1 (upper) and ν = 1.0 (lower) plotted against the iteration number

k. The errors on the fine level are shown on the left in Figures 1a and 1c, while errors on the

coarse mesh are shown on the right. Furthermore, the estimated spatial discretization error

εN (dashed) and temporal discretization error ε∆ t (dash-dotted) are indicated by black lines.

For ν = 0.1, we note that the PDE error εPDE on the fine level (Figures 1a and 1c) satu-

rates – as expected – at a level determined by the spatial discretization error εN ; and the ODE

error εODE saturates at the level of the temporal discretization error ε∆ t . The collocation er-

ror εcoll saturates at near machine accuracy. Increasing the viscosity to ν = 1.0, the spatial

error remains at about 10−7 on the fine level but the time discretization error significantly

increases compared to ν = 0.1. Thus in Figure 1c, both the PDE and the ODE error satu-

rate at the value indicated by ε∆ t . Once again, the collocation error goes down to machine

accuracy, although the rate of convergence is somewhat slower compared to ν = 0.1.

On the coarse level (Figures 1b and 1d), the estimated spatial error εN is noticeably

higher because the values of N are smaller and the order of the spatial discretization is lower.

However, as expected, the coarse level error of MLSDC saturates at values determined by

the accuracy of the finest level. The saturation of εPDE and εODE are identical in the left and

right figures, despite the difference in εN and ε∆ t . This demonstrates that the FAS correction

in MLSDC allows the solutions on coarse levels to obtain the accuracy of the finest level as

long as sufficiently many iterations are performed.

3.2.3 Required iterations

Table 2 shows the number of fine level sweeps required by SDC and MLSDC to reduce

the infinity norm of the residual rrrk, see (5), below 10−5. For both setups, ν = 0.1 as well

as ν = 1.0, MLSDC reduces the number of required fine sweeps compared to single-level

SDC. In turn, however, MLSDC adds some overhead from coarse level sweeps. If these are

cheap enough, the reduced iteration number will result in reduced computing time, cf. §3.4.

3.2.4 Stopping criteria

Note that the overall PDE error of the solution is not reduced further by additional iterations

once εcoll ≤ max{εN ,ε∆ t}. In Figures 1a–1d, this corresponds to the point where the line

with red circles (iteration error) drops below the dot-dashed line (indicating ε∆ t ) or dashed

line (indicating εN). The MLSDC solution, however, continues to converge to the collocation

solution. In a scenario where the PDE error is the main criterion for the quality of a solution,

iterating beyond εPDE no longer improves the solution. This suggests adaptively setting the

tolerance for the residual of the MLSDC iteration in accordance with error estimators for εN

and ε∆ t to avoid unnecessary further iterations.
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(a) Errors on fine level for ν = 0.1.
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(b) Errors on coarse level for ν = 0.1.
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(c) Errors on fine level for ν = 1.0
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(d) Errors on coarse level for ν = 1.0

Fig. 1: Errors on fine and coarse level of MLSDC vs. iteration count. The dashed line indicates the spatial

error εN while the dot-dashed line indicates the temporal error ε∆ t . The red circles indicate the difference

εcoll between MLSDC and the collocation solution, the blue diamonds indicate the difference εODE between

MLSDC and the ODE solution and the green squares indicate the difference εPDE between MLSDC and the

PDE solution. In (c) and (d), εODE is nearly identical to εPDE. Note how the FAS correction in MLSDC

allows the coarse level to attain the same accuracy as the fine level solution: the saturation limits on the fine

and coarse mesh are identical.

3.3 Shear layer instability

In this example, we study the behavior of MLSDC in the case where the exact solution is

not well resolved. We consider a shear layer instability in a 2D doubly periodic domain

governed by the vorticity-velocity formulation of the 2D Navier-Stokes equations given by

ω t +u ·∇ω = ν∇2ω

with velocity u ∈ R
2× [0,∞), vorticity ω = ∇× u ∈ R

×[0,∞) and viscosity ν ∈ R
+. We

consider the spatial domain [0,1]2 with periodic boundary conditions in all directions and

the initial conditions

u0
1(x,y) =−1.0+ tanh(ρ(0.5− y))+ tanh(ρ(y−0.25))

u0
2(x,y) =−δ sin(2π(x+0.25)).
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These initial conditions correspond to two horizontal shear layers, of “thickness” ρ = 50, at

y = 0.75 and y = 0.25, with a disturbance of magnitude δ = 0.05 in the vertical velocity u2.

As in §3.2, the system is split into implicit/explicit parts according to

ω t = f E(ω)+ f I(ω)

where

f E(ω) =−u ·∇ω

f I(ω) = ν∇2ω.

While the implicit term f I is discretized and solved as before, we apply a streamfunction

approach for the explicit term f E : for periodic boundary conditions, we can assume u =
∇×ψ for a solenoidal streamfunction ψ . Thus,

ω = ∇× (∇×ψ) =−∇2ψ.

We refer to [9] for more details. To compute f E
p,N(ω) with order-p operators on an N×N

mesh, we therefore solve the Poisson problem

−∇2ψ = ω

for ψ using the linear multigrid method described previously, calculate the discretized ver-

sion of u = ∇×ψ and finally compute the discretization of u ·∇ω , both with order-p oper-

ators.

Two levels with M + 1 = 9 collocation nodes are used with a 128× 128 point spatial

mesh and a fourth order stencil on the fine level. Different combinations of coarsening are

tested (the numbers in parentheses correspond to the strategies as listed in §2.2.4):

1. MLSDC(1,2) uses a coarsened 64×64 point mesh on the coarse level and second-order

stencils.

2. MLSDC(1,2,3(1)) as MLSDC(1,2) but also solves the implicit linear systems in the

coarse SDC sweep only approximately with a single V-cycle.

3. MLSDC(1,2,3(2)) as MLSDC(1,2,3(1)) but with two V-cycles.

4. MLSDC(2,3(1)) uses also a 128×128 point mesh on the coarse level, but second-order

stencils and approximate linear solves using a single V-cycle.

The simulation computes 256 timesteps of MLSDC up to a final time t = 1.0. As reference, a

classical SDC solution is computed using 1024 timesteps with M+1 = 13 collocation nodes

and the fine level spatial discretization. Both SDC and MLSDC iterate until the residual

satisfies
∥

∥rrrk
∥

∥

∞
≤ 10−12.

3.3.1 Vorticity field on all levels

Figure 2 shows the vorticity field at the end of the simulation on the fine and the coarse

level. The relative maximum error εODE at time t = 1 is approximately 10−12 (which cor-

responds to the spatial and temporal residual thresholds that were used for all runs in this

example). We note that simply running SDC with the coarse level spatial discretization from

MLSDC(1,2) gives completely unsatisfactory results (not shown): spurious vortices exist in

addition to the two correct vortices and strong spurious oscillations are present in the vor-

ticity field. In contrast, the coarse level solution from MLSDC shown in Figure 2b looks

reasonable, again because of the FAS correction.
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(a) MLSDC, fine level: 128×128, p = 4
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(b) MLSDC, coarse level: 64×64, p = 2

Fig. 2: Vorticity of the solution of the shear layer instability at t = 1.0 on the fine level (left) and coarse level

(right) using MLSDC(1,2,3(1)).

3.3.2 Required iterations

Table 3 shows the average number of fine level sweeps over all timesteps required by

SDC and MLSDC to converge. The configurations MLSDC(1,2), MLSDC(1,2,3(1)) and

MLSDC(1,2,3(2)) do not reduce the number of sweeps, but instead lead to a small increase.

Avoiding a coarsened spatial mesh in MLSDC(2,3(1)), however, saves a small amount of

fine sweeps compared to SDC. Note that here, in contrast to the example presented in §3.4,

Strategy 1 has a significant negative impact on the performance of MLSDC. This illustrates

that coarsening in MLSDC cannot be used in the same way for every problem: a careful

adaption of the employed strategies to the problem at hand is necessary.

Method # Fine sweeps on average

SDC 6.46

MLSDC(1,2) 6.64

MLSDC(1,2,3(1)) 6.62

MLSDC(1,2,3(2)) 6.64

MLSDC(2,3(1)) 5.26

Table 3: Average number of fine level sweeps required to converge for SDC and MLSDC for the shear layer

instability. The numbers indicate the different coarsening strategies.

3.4 Three-dimensional viscous Burgers’ equation

To demonstrate that MLSDC can not only reduce iterations but also runtime, we consider

viscous Burgers’ equation in three dimensions

ut(x, t)+u(x, t) ·∇u(x, t) = ν∇2u(x, t), x ∈ [0,1]3, 0≤ t ≤ 1

with x = (x,y,z), initial value

u(x, t) = exp

(

−
(x−0.5)2 +(y−0.5)2 +(z−0.5)2

σ2

)

, σ = 0.1,
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homogeneous Dirichlet boundary condition and diffusion coefficients ν = 0.1 and ν = 1.0.

The problem is solved using a FORTRAN implementation of MLSDC combined with a C

implementation of a parallel multigrid solver (PMG) in space [4]. A single timestep of length

∆ t = 0.01 is performed with MLSDC, corresponding to CFL numbers from the diffusive

term on the fine level, that is

Cdiff :=
ν∆ t

∆x2
,

of about Cdiff = 66 (for ν = 0.1) and Cdiff = 656 (for ν = 1.0). The diffusion term is inte-

grated implicitly using PMG to solve the corresponding linear system and the advection term

is treated explicitly. Simulations are run on 512 cores on the IBM BlueGene/Q JUQUEEN

at the Jülich Supercomputing Centre.

MLSDC is run with M + 1 = 3, M + 1 = 5 and M + 1 = 7 Gauss-Lobatto nodes with

a tolerance for the residual of 10−5. Two MLSDC levels are used with all three types of

coarsening applied:

1. The fine level uses a 2553 point mesh and the coarse level 1273.

2. A 4th-order compact difference stencil for the Laplacian and a 5th-order WENO [27] for

the advection term are used on the fine level; a 2nd-order stencil for the Laplacian and a

1st-order upwind scheme for advection on the coarse.

3. The accuracy of the implicit solve on the coarse level is varied by fixing the number of

V-cycles of PMG on this level.

Three runs are performed, each with a different number of V-cycles on the coarse level. In

the first run, the coarse level linear systems are solved to full accuracy, whereas the second

and third runs use one and two V-cycles of PMG on the coarse level, respectively, instead

of solving to full accuracy. These cases are referred to as MLSDC(1,2), MLSDC(1,2,3(1)),

and MLSDC(1,2,3(2)). On the fine level, implicit systems are always solved to full accuracy

(the PMG multigrid iteration reaches a tolerance of reach a tolerance of 10−12 or stalls).

Required iterations and runtimes. Table 4 shows both the required fine level sweeps for

SDC and MLSDC as well as the total runtimes in seconds for ν = 0.1 and ν = 1.0 for

three different values of M. MLSDC(1,2) and MLSDC(1,2,3(2)) in all cases manage to

significantly reduce the number of fine sweeps required for convergence in comparison to

single-level SDC, typically by about a factor of two. These savings in fine level sweeps

translate into runtime savings on the order of 30−40%. For 3 and 5 quadrature nodes, there

is no negative impact in terms of additional fine sweeps by using a reduced implicit solve

on the coarse level and MLSDC(1,2,3(2)) is therefore faster than MLSDC(1,2). However,

since coarse level V-cycles are very cheap due to spatial coarsening, the additional savings in

runtime are small. For 7 quadrature nodes, using a reduced implicit solve on the coarse level

in MLSDC(1,2,3(2)) comes at the price of an additional MLSDC iteration and therefore,

MLSDC(1,2) is the fastest variant in this case.

Using only a single V-cycle for implicit solves on the coarse grid in MLSDC(1,2,3(1))

results in a modest to significant increase in the number of required MLSDC iterations

compared to MLSDC(1,2,3(2)) in almost all cases. The only exception is the run with

3 nodes and ν = 0.1. Therefore, MLSDC(1,2,3(1)) is typically significantly slower than

MLSDC(1,2) or MLSDC(1,2,3(2)) and not recommended for use in three dimensions. For 7

quadrature nodes, using only a single V-cycle leads to a dramatic increase in the number of

required fine sweeps and MLSDC becomes much slower than single level SDC, indicating

that the inaccurate coarse level has a negative impact on convergence.
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M+1 = 3 Gauss-Lobatto nodes

ν = 0.1

Method F-Sweeps Runtime (sec)

SDC 9 39.4

MLSDC(1,2) 4 26.2

MLSDC(1,2,3(2)) 4 25.6

MLSDC(1,2,3(1)) 5 29.7

ν = 1.0

Method F-Sweeps Runtime (sec)

SDC 16 74.1

MLSDC(1,2) 8 49.1

MLSDC(1,2,3(2)) 8 47.0

MLSDC(1,2,3(1)) 8 46.7

M+1 = 5 Gauss-Lobatto nodes

ν = 0.1

Method F-Sweeps Runtime (sec)

SDC 7 59.5

MLSDC(1,2) 3 40.8

MLSDC(1,2,3(2)) 3 39.8

MLSDC(1,2,3(1)) 8 79.7

ν = 1.0

Method F-Sweeps Runtime (sec)

SDC 18 162.7

MLSDC(1,2) 9 105.6

MLSDC(1,2,3(2)) 9 101.5

MLSDC(1,2,3(1)) 14 142.8

M+1 = 7 Gauss-Lobatto nodes

ν = 0.1

Method F-Sweeps Runtime (sec)

SDC 5 82.4

MLSDC(1,2) 2 46.1

MLSDC(1,2,3(2)) 3 57.2

MLSDC(1,2,3(1)) 11 147.2

ν = 1.0

Method F-Sweeps Runtime (sec)

SDC 17 224.7

MLSDC(1,2) 8 139.5

MLSDC(1,2,3(2)) 9 148.1

MLSDC(1,2,3(1)) 44 560.4

Table 4: Number of required fine level sweeps and resulting runtimes in seconds by SDC and MLSDC for

3D viscous Burgers’ equation. The numbers in parentheses after MLSDC indicate the employed coarsening

strategies, see §2.2.4. Reduced implicit solves are indicated by 3(n) where n indicates the fixed number of

multigrid V-cycles. Otherwise, PMG iterates until a residual of 10−12 is reached or the iteration stalls. The

tolerance for the SDC/MLSDC iteration is 10−5.

4 Discussion

The paper analyzes the multi-level spectral deferred correction method (MLSDC), an exten-

sion to the original single-level spectral deferred corrections (SDC) as well as ladder SDC

methods. In contrast to SDC, MLSDC performs correction sweeps in time on a hierarchy

of discretization levels, similar to V-cycles in classical multigrid. An FAS correction is used

to increase the accuracy on coarse levels. The paper also presents a new procedure to incor-

porate weighting matrices arising in higher-order compact finite difference stencils into the

SDC method. The advantage of MLSDC is that it shifts computational work from the fine

level to coarse levels, thereby reducing the number of fine SDC sweeps and, therefore, the

time-to-solution.

For MLSDC to be efficient, a reduced representation of the problem on the coarse levels

has to be used in order to make coarse level sweeps cheap in terms of computing time.

Three strategies are investigated numerically, namely (1) using fewer degrees of freedom, (2)

reducing the order of the discretization, and (3) reducing the accuracy of the linear solver in

implicit substeps on the coarse level. Numerical results are presented for the wave equation,

viscous Burgers’ equation in 1D and 3D and for the 2D Navier-Stokes equation in vorticity-

velocity formulation. It is demonstrated that because of the FAS correction, the solutions on

all levels converge up to the accuracy determined by the discretization on the finest level.

More significantly, in all four examples, MLSDC can reduce the number of fine level sweeps

required to converge compared to single level SDC. For the 3D example this translates

directly into significantly reduced computing times in comparison to single-level SDC.
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One potential continuation of this work is to investigate reducing the accuracy of im-

plicit solves on the fine level in MLSDC as well. In [40], so called inexact spectral deferred

corrections (ISDC) methods are considered, where implicit solves at each SDC node are

replaced by a small number of multigrid V-cycles. As with MLSDC, the reduced cost ofx

implicit solves are somewhat offset by an increase in the number of SDC iterations required

for convergence. Nevertheless, numerical results in [40] demonstrate an overall reduction of

cost for ISDC methods versus SDC for certain test cases. The optimal combination of coars-

ening and reducing V-cycles for SDC methods using multigrid for implicit solves appears to

be problem-dependent, and an analysis of this topic is in preparation.

The MLSDC algorithm has also been applied to Adaptive Mesh Refinement (AMR)

methods popular in finite-volume methods for conservative systems. In the AMR + MLSDC

algorithm, each AMR level is associated with its own MLSDC level, resulting in a hierar-

chy of hybrid space/time discretizations with increasing space/time resolution. When a new

(high resolution) level is added to the AMR hierarchy, a new MLSDC level is created. The

resulting scheme differs from traditional sub-cycling AMR time-stepping schemes in a few

notable aspects: fine level sub-cycling is achieved through increased temporal resolution of

the MLSDC nodes; flux corrections across coarse/fine AMR grid boundaries are naturally

incorporated into the MLSDC FAS correction; fine AMR ghost cells eventually become

high-order accurate through the iterative nature of MLSDC V-cycling; and finally, the cost

of implicit solves on all levels decreases with each MLSDC V-cycle as initial guesses im-

prove. Preliminary results suggest that the AMR+MLSDC algorithm can be successfully

applied to the compressible Navier-Stokes equations with stiff chemistry for the direct nu-

merical simulation of combustion problems. A detailed description of the AMR+MLSDC

algorithm with applications is currently in preparation.

Finally, the impact and performance of the coarsening strategies presented here are also

of relevance to the parallel full approximation scheme in space and time (PFASST) [17,

18,34,39] algorithm, which is a time-parallel scheme for ODEs and PDEs. Like MLSDC,

PFASST employs a hierarchy of levels but performs SDC sweeps on multiple time intervals

concurrently with corrections to initial conditions being communicated forward in time dur-

ing the iterations. Parallel efficiency in PFASST can be achieved because fine SDC sweeps

are done in parallel while sweeps on the coarsest level are in essence done serially. In the

PFASST algorithm, there is a trade-off between decreasing the cost on coarse levels to im-

prove parallel efficiency and retaining good accuracy on the coarse level to minimize the

number of parallel iterations required to converge. In [18] it was shown that, for mesh-based

PDE discretizations, using a spatial mesh with fewer points on the coarse level in conjunc-

tion with a reduced number of quadrature nodes, led to a method with significant parallel

speed up. Incorporating the additional coarsening strategies presented here for MLSDC into

PFASST would further reduce the cost of coarse levels, but it is unclear how this might

translate into an increase in the number of parallel PFASST iterations required.
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