81 research outputs found

    Toll-Like Receptors 2 and 4 Regulate the Frequency of IFNγ-Producing CD4+ T-Cells during Pulmonary Infection with Chlamydia pneumoniae

    Get PDF
    TLR2 and TLR4 are crucial for recognition of Chlamydia pneumoniae in vivo, since infected TLR2/4 double-deficient mice are unable to control the infection as evidenced by severe loss of body weight and progressive lethal pneumonia. Unexpectedly, these mice display higher pulmonary levels of the protective cytokine IFNγ than wild type mice. We show here, that antigen-specific CD4+ T-cells are responsible for the observed IFNγ-secretion in vivo and their frequency is higher in TLR2/4 double-deficient than in wild type mice. The capacity of TLR2/4 double-deficient dendritic cells to re-stimulate CD4+ T-cells did not differ from wild type dendritic cells. However, the frequency of CD4+CD25+Foxp3+ T-cells was considerably higher in wild type compared to TLR2/4 double-deficient mice and was inversely related to the number of IFNγ-secreting CD4+ effector T-cells. Despite increased IFNγ-levels, at least one IFNγ-mediated response, protective NO-secretion, could not be induced in the absence of TLR2 and 4. In summary, CD4+CD25+Foxp3+ regulatory T-cells fail to expand in the absence of TLR2 and TLR4 during pulmonary infection with C. pneumoniae, which in turn enhances the frequency of CD4+IFNγ+ effector T-cells. Failure of IFNγ to induce NO in TLR2/4 double-deficient cells represents one possible mechanism why TLR2/4 double-deficient mice are unable to control pneumonia caused by C. pneumoniae and succumb to the infection

    Multivariable regression analysis in Schistosoma mansoni-infected individuals in the Sudan reveals unique immunoepidemiological profiles in uninfected, egg+ and non-egg+ infected individuals

    Get PDF
    Background: In the Sudan, Schistosoma mansoni infections are a major cause of morbidity in schoolaged children and infection rates are associated with available clean water sources. During infection, immune responses pass through a Th1 followed by Th2 and Treg phases and patterns can relate to different stages of infection or immunity. Methodology: This retrospective study evaluated immunoepidemiological aspects in 234 individuals(range 4–85 years old) from Kassala and Khartoum states in 2011. Systemic immune profiles(cytokines and immunoglobulins) and epidemiological parameters were surveyed in n = 110 persons presenting patent S. mansoni infections (egg+), n = 63 individuals positive for S. mansoni via PCR in sera but egg negative (SmPCR+) and n = 61 people who were infection-free (Sm uninf). Immunoepidemiological findings were further investigated using two binary multivariable regression analysis. Principal Findings: Nearly all egg+ individuals had no access to latrines and over 90% obtained water via the canal stemming from the Atbara River. With regards to age, infection and an egg+ status was linked to young and adolescent groups. In terms of immunology, S. mansoni infection per se was strongly associated with increased SEA-specific IgG4 but not IgE levels. IL-6, IL-13 and IL-10 were significantly elevated in patently-infected individuals and positively correlated with egg load. In contrast, IL-2 and IL-1β were significantly lower in SmPCR+ individuals when compared to Sm uninf and egg+ groups which was further confirmed during multivariate regression analysis. Conclusions/Significance: Schistosomiasis remains an important public health problem in the Sudan with a high number of patent individuals. In addition, SmPCR diagnostics revealed another cohort of infected individuals with a unique immunological profile and provides an avenue for future studies on non-patent infection states. Future studies should investigate the downstream signalling pathways/mechanisms of IL-2 and IL-1β as potential diagnostic markers in order to distinguish patent from non-patent individuals

    Inhibition of SLPI ameliorates disease activity in experimental autoimmune encephalomyelitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The secretory leukocyte protease inhibitor (SLPI) exerts wide ranging effects on inflammatory pathways and is upregulated in EAE but the biological role of SLPI in EAE, an animal model of multiple sclerosis is unknown</p> <p>Methods</p> <p>To investigate the pathophysiological effects of SLPI within EAE, we induced SLPI-neutralizing antibodies in mice and rats to determine the clinical severity of the disease. In addition we studied the effects of SLPI on the anti-inflammatory cytokine TGF-β.</p> <p>Results</p> <p>The induction of SLPI neutralizing antibodies resulted in a milder disease course in mouse and rat EAE. SLPI neutralization was associated with increased serum levels of TGF-β and increased numbers of FoxP3+ CD4+ T cells in lymph nodes. <it>In vitro</it>, the addition of SLPI significantly decreased the number of functional FoxP3+ CD25<sup>hi </sup>CD4+ regulatory T cells in cultures of naive human CD4+ T cells. Adding recombinant TGF-β to SLPI-treated human T cell cultures neutralized SLPI's inhibitory effect on regulatory T cell differentiation.</p> <p>Conclusion</p> <p>In EAE, SLPI exerts potent pro-inflammatory actions by modulation of T-cell activity and its neutralization may be beneficial for the disease.</p

    Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths

    Get PDF
    Helminth infection is frequently associated with the expansion of regulatory T cells (Tregs) and suppression of immune responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3(+)Helios(+)CD4(+) thymic (t)Tregs in the lamina propria and mesenteric lymph nodes while Foxp3(+)Helios(-)CD4(+) peripheral (p)Treg expand more slowly. Notably, in partially resistant BALB/c mice parasite survival positively correlates with Foxp3(+)Helios(+)CD4(+) tTreg numbers. Boosting of Foxp3(+)Helios(+)CD4(+) tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2 (IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly, complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with "immunological chaos" evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-γ. In contrast, worm clearance could be induced by anti-CD25 antibody-mediated partial depletion of early Treg, alongside increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching importance of the early Treg response to infection and the non-linear association between inflammation and the prevailing Treg frequency

    Circulating CD14brightCD16+ 'intermediate' monocytes exhibit enhanced parasite pattern recognition in human helminth infection.

    Get PDF
    Circulating monocyte sub-sets have recently emerged as mediators of divergent immune functions during infectious disease but their role in helminth infection has not been investigated. In this study we evaluated whether 'classical' (CD14brightCD16-), 'intermediate' (CD14brightCD16+), and 'non-classical' (CD14dimCD16+) monocyte sub-sets from peripheral blood mononuclear cells varied in both abundance and ability to bind antigenic material amongst individuals living in a region of Northern Senegal which is co-endemic for Schistosoma mansoni and S. haematobium. Monocyte recognition of excretory/secretory (E/S) products released by skin-invasive cercariae, or eggs, of S. mansoni was assessed by flow cytometry and compared between S. mansoni mono-infected, S. mansoni and S. haematobium co-infected, and uninfected participants. Each of the three monocyte sub-sets in the different infection groups bound schistosome E/S material. However, 'intermediate' CD14brightCD16+ monocytes had a significantly enhanced ability to bind cercarial and egg E/S. Moreover, this elevation of ligand binding was particularly evident in co-infected participants. This is the first demonstration of modulated parasite pattern recognition in CD14brightCD16+ intermediate monocytes during helminth infection, which may have functional consequences for the ability of infected individuals to respond immunologically to infection

    The absence of MyD88 has no effect on the induction of alternatively activated macrophage during Fasciola hepatica infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alternatively activated macrophages (AAMϕ) play important roles in allergies and responses to parasitic infections. However, whether signaling through toll-like receptors (TLRs) plays any role in AAMϕ induction when young <it>Fasciola hepatica </it>penetrates the liver capsule and migrates through the liver tissue is still unclear.</p> <p>Results</p> <p>The data show that the lack of myeloid differentiation factor 88 (MyD88) has no effect on the AAMϕ derived from the bone marrow (BMMϕ) <it>in vitro </it>and does not impair the mRNA expression of arginase-1, resistin-like molecule (RELMα), and Ym1 in BMMϕs. The Th2 cytokine production bias in splenocytes was not significantly altered in <it>F. hepatica</it>-infected mice in the absence of MyD88 <it>in vitro </it>and in the pleural cavity lavage <it>in vivo</it>. In addition, MyD88-deficiency has no effect on the arginase production of the <it>F. hepatica </it>elicited macrophages (Fe Mϕs), production of RELMα and Ym1 proteins and mRNA expression of Ym1 and RELMα of macrophages in the peritoneal cavity 6 weeks post <it>F. hepatica </it>infection.</p> <p>Conclusions</p> <p>The absence of MyD88 has no effect on presence of AAMϕ 6 weeks post <it>F. hepatica </it>infection.</p

    A Defined, Feeder-Free, Serum-Free System to Generate In Vitro Hematopoietic Progenitors and Differentiated Blood Cells from hESCs and hiPSCs

    Get PDF
    Human ESC and iPSC are an attractive source of cells of high quantity and purity to be used to elucidate early human development processes, for drug discovery, and in clinical cell therapy applications. To efficiently differentiate pluripotent cells into a pure population of hematopoietic progenitors we have developed a new 2-dimentional, defined and highly efficient protocol that avoids the use of feeder cells, serum or embryoid body formation. Here we showed that a single matrix protein in combination with growth factors and a hypoxic environment is sufficient to generate from pluripotent cells hematopoietic progenitors capable of differentiating further in mature cell types of different lineages of the blood system. We tested the differentiation method using hESCs and 9 iPSC lines generated from different tissues. These data indicate the robustness of the protocol providing a valuable tool for the generation of clinical-grade hematopoietic cells from pluripotent cells

    Induction of CD4+CD25+FOXP3+ Regulatory T Cells during Human Hookworm Infection Modulates Antigen-Mediated Lymphocyte Proliferation

    Get PDF
    Hookworm infection is considered one of the most important poverty-promoting neglected tropical diseases, infecting 576 to 740 million people worldwide, especially in the tropics and subtropics. These blood-feeding nematodes have a remarkable ability to downmodulate the host immune response, protecting themselves from elimination and minimizing severe host pathology. While several mechanisms may be involved in the immunomodulation by parasitic infection, experimental evidences have pointed toward the possible involvement of regulatory T cells (Tregs) in downregulating effector T-cell responses upon chronic infection. However, the role of Tregs cells in human hookworm infection is still poorly understood and has not been addressed yet. In the current study we observed an augmentation of circulating CD4+CD25+FOXP3+ regulatory T cells in hookworm-infected individuals compared with healthy non-infected donors. We have also demonstrated that infected individuals present higher levels of circulating Treg cells expressing CTLA-4, GITR, IL-10, TGF-β and IL-17. Moreover, we showed that hookworm crude antigen stimulation reduces the number of CD4+CD25+FOXP3+ T regulatory cells co-expressing IL-17 in infected individuals. Finally, PBMCs from infected individuals pulsed with excreted/secreted products or hookworm crude antigens presented an impaired cellular proliferation, which was partially augmented by the depletion of Treg cells. Our results suggest that Treg cells may play an important role in hookworm-induced immunosuppression, contributing to the longevity of hookworm survival in infected people
    corecore