81 research outputs found

    Isothermal solidification in a binary alloy melt

    Get PDF
    A space shuttle experiment employing the General Purpose (Rocket) Furnace (GPF) in its isothermal mode of operation is manifested on MSL-3, circa 1989. The central aim of this experiment is to investigate the effect of reduced gravity levels on the segregation behavior in a slowly, and isothermally, cooled sample of a binary Pb-15 wt percent Sn alloy. This experiment would thus be able to simulate, in a small laboratory sample, about 20 mm dia 60 mm high and weighing about 150 grams, some aspects of the segregation phenomena occurring in large industrial ingots. Ground-based experiments conducted in the single-cavity simulator of the GPF, located at Marshall Space Flight Center (MSFC), in support of the microgravity experiment are described in detail. The results of the MSFC experiments are compared with other related experiments conducted at Case Western Reserve University (CWRU), wherein the isothermal constraints were relaxed

    Fraction eutectic measurements in slowly cooled Pb - 15 wt percent Sn alloys

    Get PDF
    A space shuttle experiment employing the General Purpose Furnace in its isothermal mode of operation is currently manifested for flight circa 1989. The aim of this experiment was to investigate the role of gravity in a slowly, and isothermally, cooled sample of a binary Pb - 15 wt percent Sn alloy. Ground based work in support of the microgravity experiment is discussed. In particular, it is shown that fraction eutectic measurements using an image analyzer, can be used to satisfactorily describe macrosegregation occurring in these slowly cooled ingots

    Some fundamental aspects of solidification in a supercooled melt

    Get PDF
    A model of dendritic growth in both supercooled pure and alloy melts is presented. In a pure melt, dendrite morphology is determined by the value of the dimensionless parameter sigma = 2 alpha (L)d(o)/sq Rr(t) whereas, in an alloy melt it is determined by the parameter sigma = 2 lambda (c)D(L)/sq Rr(t). The application of the above analysis to cylindrical and spherical growth morphologies obtained in highly supercooled melts has been discussed. An upper and lower bound for the particle or tip radius in this case has been obtained in terms of the growth rate and the initial bath supercooling

    Gravitational macrosegregation in binary Pb-Sn alloy ingots

    Get PDF
    A space shuttle experiment employing the General Purpose (Rocket) Furnace (GPF) in its isothermal mode of operation is manifested on MSL-3, circa 1989. The central aim of this experiment is to investigate the effect of reduced gravity levels on the segregation behavior in a slowly, and isothermally, cooled sample of a binary Pb-15 wt% Sn alloy. This experiment should be able to simulate, in a small laboratory sample, some aspects of the segragation phenomena occurring in large industrial ingots. Ground-based experiments conducted in the single-cavity simulator of the GPF, in support of the microgravity experiment are described in detail. The results of the MSFC experiments are compared with other related experiments conducted at Case Western Reserve University (CWRS), wherein the isothermal constraints were relaxed. The isothermally processed samples indicate a small and gradual increase in fraction eutectic, and a corresponding increase in tin content, from the bottom to the top of the ingot. The radial variations are minimal near the ingot bottom, but there are large radial variations in the top half. In the CWRU experiments, more severe segregations, including segregation defects known as freckles. Follow up experiments employing the GPF without the isothermal constraints, or other suitably modified space shuttle hardware are suggested

    Macrosegregation During Dendritic Arrayed Growth of Hypoeutectic Pb-Sn Alloys: Influence of Primary Arm Spacing and Mushy Zone Length

    Get PDF
    Thermosolutal convection in the dendritic mushy zone occurs during directional solidification of hypoeutectic lead tin alloys in a positive thermal gradient, with the melt on the top and the solid below. This results in macrosegregation along the length of the solidified samples. The extent of macrosegregation increases with increasing primary dendrite spacings for constant mushy zone length. For constant primary spacings, the macrosegregation increases with decreasing mushy zone length. Presence of convection reduces the primary dendrite spacings. However, convection in the interdendritic melt has significantly more influence on the spacings as compared with that in the overlying melt, which is caused by the solutal buildup at the dendrite tips

    Effect of Magnetic-Field on the Microstructure and Macrosegregation in Directionally Solidified Pb-Sn Alloys

    Get PDF
    An investigation into the influence of a transverse magnetic field (0.45 T) on the mushy zone morphology and macrosegregation in directionally solidified hypoeutectic Pb-Sn alloy shows that the field has no influence on the morphology of dendritic arrays. The field does, however, cause severe distortion in the cellular array morphology. Cellular arrayed growth with the magnetic field results in an extensive channel formation in the mushy zone, as opposed to the well-aligned and uniformly distributed cells formed in the absence of the field. The channels are produced due to the anisotropy in the thermosolutal convection caused by the magnetic field. Macrosegregation, however, along the length of the directionally solidified samples is not influenced by this magnetic field for either the cellular or dendritic arrays

    Time Dependence of Tip Morphology during Cellular/Dendritic Arrayed Growth

    Get PDF
    Succinonitrile-1.9 wt pct acetone has been directionally solidified in 0.7 X 0.7-cm-square cross section pyrex ampoules in order to observe the cell/dendrite tip morphologies, not influenced by the 'wall effects', which are present during growth in the generally used thin (about 200 gm) crucibles. The tips do not maintain a steady-state shape, as is generally assumed. Instead, they fluctuate within a shape envelope. The extent of fluctuation increases with decreasing growth speed, as the micro structure changes from the dendritic to cellular. The influence of natural convection has been examined by comparing these morphologies with those grown, without convection, in the thin ampoules

    Amino Acid Compositions of 27 Food Fishes and Their Importance in Clinical Nutrition

    Get PDF
    Proteins and amino acids are important biomolecules which regulate key metabolic pathways and serve as precursors for synthesis of biologically important substances; moreover, amino acids are building blocks of proteins. Fish is an important dietary source of quality animal proteins and amino acids and play important role in human nutrition. In the present investigation, crude protein content and amino acid compositions of important food fishes from different habitats have been studied. Crude protein content was determined by Kjeldahl method and amino acid composition was analyzed by high performance liquid chromatography and information on 27 food fishes was generated. The analysis showed that the cold water species are rich in lysine and aspartic acid, marine fishes in leucine, small indigenous fishes in histidine, and the carps and catfishes in glutamic acid and glycine. The enriched nutrition knowledge base would enhance the utility of fish as a source of quality animal proteins and amino acids and aid in their inclusion in dietary counseling and patient guidance for specific nutritional needs
    corecore