40 research outputs found
Signatures of chaotic tunnelling
Recent experiments with cold atoms provide a significant step toward a better
understanding of tunnelling when irregular dynamics is present at the classical
level. In this paper, we lay out numerical studies which shed light on the
previous experiments, help to clarify the underlying physics and have the
ambition to be guidelines for future experiments.Comment: 11 pages, 9 figures, submitted to Phys. Rev. E. Figures of better
quality can be found at http://www.phys.univ-tours.fr/~mouchet
Chaos assisted tunnelling with cold atoms
In the context of quantum chaos, both theory and numerical analysis predict
large fluctuations of the tunnelling transition probabilities when irregular
dynamics is present at the classical level. We consider here the
non-dissipative quantum evolution of cold atoms trapped in a time-dependent
modulated periodic potential generated by two laser beams. We give some precise
guidelines for the observation of chaos assisted tunnelling between invariant
phase space structures paired by time-reversal symmetry.Comment: submitted to Phys. Rev. E ; 16 pages, 13 figures; figures of better
quality can be found at http://www.phys.univ-tours.fr/~mouchet
<i>In vivo</i> gene silencing following non-invasive siRNA delivery into the skin using a novel topical formulation
AbstractTherapeutics based on short interfering RNAs (siRNAs), which act by inhibiting the expression of target transcripts, represent a novel class of potent and highly specific next-generation treatments for human skin diseases. Unfortunately, the intrinsic barrier properties of the skin combined with the large size and negative charge of siRNAs make epidermal delivery of these macromolecules quite challenging. To help evaluate the in vivo activity of these therapeutics and refine delivery strategies we generated an innovative reporter mouse model that predominantly expresses firefly luciferase (luc2p) in the paw epidermis — the region of murine epidermis that most closely models the tissue architecture of human skin. Combining this animal model with state-of-the-art live animal imaging techniques, we have developed a real-time in vivo analysis work-flow that has allowed us to compare and contrast the efficacies of a wide range nucleic acid-based gene silencing reagents in the skin of live animals. While inhibition was achieved with all of the reagents tested, only the commercially available “self-delivery” modified Accell-siRNAs (Dharmacon) produced potent and sustained in vivo gene silencing. Together, these findings highlight just how informative reliable reporter mouse models can be when assessing novel therapeutics in vivo. Using this work-flow, we developed a novel clinically-relevant topical formulation that facilitates non-invasive epidermal delivery of unmodified and “self-delivery” siRNAs. Remarkably, a sustained >40% luc2p inhibition was observed after two 1-hour treatments with Accell-siRNAs in our topical formulation. Importantly, our ability to successfully deliver siRNA molecules topically brings these novel RNAi-based therapeutics one-step closer to clinical use