8,643 research outputs found

    The weld-brazing metal joining process

    Get PDF
    Superior mechanical properties were obtained in metal joints weld-brazed between faying surfaces. Weld-braze applications and advantages are listed

    High power operation of an X-band gyrotwistron

    Get PDF
    We report the first experimental verification of a gyrotwistron amplifier. The device utilized a single 9.858 GHz, TE011 cavity, a heavily attenuated drift tube, and a long tapered output waveguide section. With a 440 kV, 200-245 A, 1 μs electron beam and a sharply tapered axial magnetic field, peak powers above 21 MW were achieved with a gain near 24 dB. Performance was limited by competition from a fundamental TE11 mode. A multimode code was developed to analyze this system, and simulations were in good agreement with the experiment

    Augustana Historical Society Publications Number 3

    Get PDF
    Table of Contents: Ernst W. Olson / Augustana Book Concern: Publishers to the Augustana Synod.--History of Its Activities since 1889, with Introductory Account of Earlier Publishing Enterprises -- Evald B. Lawson / Christina Nilsson’s Visit to Brockton, Mass., in November, 1870.--Pages from the Early History of the Oldest Swedish Lutheran Church in New Englandhttps://digitalcommons.augustana.edu/ahsbooks/1017/thumbnail.jp

    Non-commutative Complex Projective Spaces and the Standard Model

    Get PDF
    The standard model fermion spectrum, including a right handed neutrino, can be obtained as a zero-mode of the Dirac operator on a space which is the product of complex projective spaces of complex dimension two and three. The construction requires the introduction of topologically non-trivial background gauge fields. By borrowing from ideas in Connes' non-commutative geometry and making the complex spaces `fuzzy' a matrix approximation to the fuzzy space allows for three generations to emerge. The generations are associated with three copies of space-time. Higgs' fields and Yukawa couplings can be accommodated in the usual way.Comment: Contribution to conference in honour of A.P. Balachandran's 65th birthday: "Space-time and Fundamental Interactions: Quantum Aspects", Vietri sul Mare, Italy, 25th-31st May, 2003, 10 pages, typset in LaTe

    Influence of Molecular Simulation Model Accuracy on the Interfacial Properties of an Ionic Liquid: Overview of Recommended Practices

    Get PDF
    Increasing the energy storage capability of ionic liquid supercapacitors will require better understanding of ion-electrode interactions. We have probed the influence of these interactions on the structure and differential capacitance of of an ionic liquid ([EMIM][BF4]) at an ideal graphite interface as a function of model accuracy. Of note, differential capacitance is determined through newly derived and validated fluctuation formulas. In terms of model accuracy, we test electrostatic techniques, electrode charging techniques, and electrolyte interatomic potentials. For electrostatic summations, we employ high cost, high fidelity techniques as well as less expensive, approximate techniques for summation in slab geometry. For electrode charging, uniform, constant-charge and environmentally responsive, constant-potential conditions are employed. For the ionic liquid, constant charge and atomically polarizable models are employed. We comment on the role of model accuracy on the structure and energetics of the electric double layer as well as on the magnitude and shape of differential capacitance

    Efficient operation of a high-power X-band gyroklystron

    Get PDF
    Experimental studies of amplification in a two-cavity X-band gyroklystron are reported. The system utilizes a thermionic magnetron injection gun at voltages up to 440 kV and currents up to 190 A in 1-μs pulses. Optimum performance is achieved by tapering the magnetic-field profile. Peak powers of 20 MW in the TE01 mode at 9.87 GHz are measured with calibrated crystals and with methanol calorimetry. Resultant efficiencies are in excess of 31% and large-signal gains surpass 26 dB. The experimental results are in good agreement with simulated results from a partially self-consistent, nonlinear, steady-state code

    Computational and Experimental Study of Li-doped Ionic Liquids at Electrified Interfaces

    Get PDF
    We evaluate the influence of Li-salt doping on the dynamics, capacitance, and structure of three ionic liquid electrolytes, [pyr14][TFSI], [pyr13][FSI], and [EMIM][BF4], using molecular dynamics and polarizable force fields. In this respect, our focus is on the properties of the electric double layer (EDL) formed by the electrolytes at the electrode surface as a function of surface potential (Psi). The rates of EDL formation are found to be on the order of hundreds of picoseconds and only slightly influenced by the addition of Li-salt. The EDLs of three electrolytes are shown to have different energy storage capacities, which we relate to the EDL formation free energy. The differential capacitance obtained from our computations exhibits asymmetry about the potential of zero charge and is consistent with the camel-like profiles noted from mean field theories and experiments on metallic electrodes. The introduction of Li-salt reduces the noted asymmetry in the differential capacitance profile. Complementary experimental capacitance measurements have been made on our three electrolytes in their neat forms and with Li-salt. The measurements, performed on glassy carbon electrodes, produce U-like profiles, and Li-salt doping is shown to strongly affect capacitance at high magnitudes of Psi. Differences in the theoretical and experimental shapes and magnitudes of capacitance are rationalized in terms of the electrode surface and pseudocapacitive effects. In both neat and Li-doped liquids, the details of the computational capacitance profile are well described by Psi-induced changes in the density and molecular orientation of ions in the molecular layer closest to the electrode. Our results suggest that the addition of Li+ induces disorder in the EDL, which originates from the strong binding of anions to Li+. An in-depth analysis of the distribution of Li+ in the EDL reveals that it does not readily enter the molecular layer at the electrode surface, preferring instead to be localized farther away from the surface in the second molecular layer. This behavior is validated through an analysis of the free energy of Li+ solvation as a function of distance from the electrode. Free energy wells are found to coincide with localized concentrations of Li+, the depths of which increase with Psi and suggest a source of impedance for Li+ to reach the electrode

    Interfacial Structure and Capacitance of Li-doped Ionic Liquid Electrolytes from Molecular Simulations

    Get PDF
    Ionic liquids have been proposed as candidate electrolytes for high-energy density, rechargeable batteries, supercapacitors, and hybrid energy storage devices. Though Li-salt is often present in these systems, its influence on interfacial properties is largely uncharacterized. We, thereby, present an extensive computational analysis, supported by experimental comparisons, of the properties of a representative set of these electrolytesat an ideal carbon interface as a function of Li-salt doping and voltage. We have performed polarizable molecular (MD) dynamics simulations, using the APPLEP force field, to evaluate electric double layer (EDL) capacitance and distribution of Li+ in the EDL. Differential capacitance exhibits the characteristic camel profile and is insensitive to Li-doping. Li+ localizes in the second molecular layer of the EDL, which is a result of confinement from free energy barriers associated with ion layering. Joint MDelectronic structure computations show the electrochemical window of the electrolytes to be a weak function of Li-doping. Estimates of supercapacitor specific energy are made using the computed window and capacitance. The magnitude and trends in specific energy are in good agreement with experiment

    Li-Doped Ionic Liquid Electrolytes: From Bulk Phase to Interfacial Behavior

    Get PDF
    Ionic liquids have been proposed as candidate electrolytes for high-energy density, rechargeable batteries. We present an extensive computational analysis supported by experimental comparisons of the bulk and interfacial properties of a representative set of these electrolytes as a function of Li-salt doping. We begin by investigating the bulk electrolyte using quantum chemistry and ab initio molecular dynamics to elucidate the solvation structure of Li(+). MD simulations using the polarizable force field of Borodin and coworkers were then performed, from which we obtain an array of thermodynamic and transport properties. Excellent agreement is found with experiments for diffusion, ionic conductivity, and viscosity. Combining MD simulations with electronic structure computations, we computed the electrochemical window of the electrolytes across a range of Li(+)-doping levels and comment on the role of the liquid environment. Finally, we performed a suite of simulations of these Li-doped electrolytes at ideal electrified interfaces to evaluate the differential capacitance and the equilibrium Li(+) distribution in the double layer. The magnitude of differential capacitance is in good agreement with our experiments and exhibits the characteristic camel-shaped profile. In addition, the simulations reveal Li(+) to be highly localized to the second molecular layer of the double layer, which is supported by additional computations that find this layer to be a free energy minimum with respect to Li(+) translation

    Simulations of Li+ in Ionic Liquids: Structure, Transport, and Electrochemical Windows

    Get PDF
    Ionic liquids have been proposed as candidate electrolytes for a number of electrochemical applications. The Li+ solvation structure in these liquids is of central importance to electrolyte properties, like ionic conductivity and electrochemical stability. To this point, we employ simulations at three different size scales to better understand various aspects of the interplay between Li+ solvation structure and dynamics. The smallest systems are Li(Anion)n clusters that are treated with high-accuracy density functional theory (DFT) techniques to provide insight into solvation shell structure through energetics and comparisons to experimental IRRaman spectra. Mid-range sized liquid-phase systems (12-24 ion pairs) are treated with DFT molecular dynamics (MD) to provide temperature-dependent insight into Li+ solvation structure, diffusion, and electrochemical window. The largest systems (144-216 ion pairs) are treated with polarizable MD simulations to evaluate the influence of Li-networks on structure and provide size independent values of transport properties. We perform this procedure on three technologically important ionic liquids and comment on property correlations with solvation structure
    corecore