6,651 research outputs found

    Impact of Dark Matter Microhalos on Signatures for Direct and Indirect Detection

    Full text link
    Detecting dark matter as it streams through detectors on Earth relies on knowledge of its phase space density on a scale comparable to the size of our solar system. Numerical simulations predict that our Galactic halo contains an enormous hierarchy of substructures, streams and caustics, the remnants of the merging hierarchy that began with tiny Earth mass microhalos. If these bound or coherent structures persist until the present time, they could dramatically alter signatures for the detection of weakly interacting elementary particle dark matter (WIMP). Using numerical simulations that follow the coarse grained tidal disruption within the Galactic potential and fine grained heating from stellar encounters, we find that microhalos, streams and caustics have a negligible likelihood of impacting direct detection signatures implying that dark matter constraints derived using simple smooth halo models are relatively robust. We also find that many dense central cusps survive, yielding a small enhancement in the signal for indirect detection experiments.Comment: 6 pages, revision in response to referees report. Now accepted by Phys. Rev D., in pres

    Fitting formulae of the reduced-shear power spectrum for weak lensing

    Full text link
    Context. Weak gravitational lensing is a powerful probe of large-scale structure and cosmology. Most commonly, second-order correlations of observed galaxy ellipticities are expressed as a projection of the matter power spectrum, corresponding to the lowest-order approximation between the projected and 3d power spectrum. Aims. The dominant lensing-only contribution beyond the zero-order approximation is the reduced shear, which takes into account not only lensing-induced distortions but also isotropic magnification of galaxy images. This involves an integral over the matter bispectrum. We provide a fast and general way to calculate this correction term. Methods. Using a model for the matter bispectrum, we fit elementary functions to the reduced-shear contribution and its derivatives with respect to cosmological parameters. The dependence on cosmology is encompassed in a Taylor-expansion around a fiducial model. Results. Within a region in parameter space comprising the WMAP7 68% error ellipsoid, the total reduced-shear power spectrum (shear plus fitted reduced-shear correction) is accurate to 1% (2%) for l<10^4 (l<2x10^5). This corresponds to a factor of four reduction of the bias compared to the case where no correction is used. This precision is necessary to match the accuracy of current non-linear power spectrum predictions from numerical simulations.Comment: 7 pages, 3 figures. A&A in press. Revised version with minor change

    Weak lensing observations of the "dark" cluster MG2016+112

    Get PDF
    We investigate the possible existence of a high-redshift (z=1) cluster of galaxies associated with the QSO lens system MG2016+112. From an ultra-deep R- and less deep V- and I-band Keck images and a K-band mosaic from UKIRT, we detect ten galaxies with colors consistent with the lensing galaxy within 225h^{-1} kpc of the z=1.01 lensing galaxy. This represents an overdensity of more than ten times the number density of galaxies with similar colors in the rest of the image. We also find a group of seven much fainter objects closely packed in a group only 27h^{-1} kpc north-west of the lensing galaxy. We perform a weak lensing analysis on faint galaxies in the R-band image and detect a mass peak of a size similar to the mass inferred from X-ray observations of the field, but located 64" northwest of the lensing galaxy. From the weak lensing data we rule out a similar sized mass peak centered on the lensing galaxy at the 2 sigma level.Comment: 9 pages, 10 figures, submitted to A&A version with figure 4 at higher resolution can be downloaded from http://www.mpa-garching.mpg.de/~clowe/mg2016aa.ps.g

    Removable Matter-Power-Spectrum Covariance from Bias Fluctuations

    Full text link
    We find a simple, accurate model for the covariance matrix of the real-space cosmological matter power spectrum on slightly nonlinear scales (k~0.1-0.8 h/Mpc at z=0), where off-diagonal matrix elements become substantial. The model includes a multiplicative, scale-independent modulation of the power spectrum. It has only one parameter, the variance (among realizations) of the variance of the nonlinear density field in cells, with little dependence on the cell size between 2-8 Mpc/h. Furthermore, we find that this extra covariance can be modeled out by instead measuring the power spectrum of (delta/sigma_cell), i.e. the ratio of the overdensity to its dispersion in cells a few Mpc in size. Dividing delta by sigma_cell essentially removes the non-Gaussian part of the covariance matrix, nearly diagonalizing it.Comment: Accepted to ApJ. 5 pages, 5 figures; slight clarifications to match accepted versio

    High power diode laser surface glazing of concrete

    Get PDF
    This present work describes the utilisation of the relatively novel high power diode laser (HPDL) to generate a surface glaze on the ordinary Portland cement (OPC) surface of concrete. The value of such an investigation would be to facilitate the hitherto impossible task of generating a durable and long-lasting surface seal on the concrete, thereby extending the life and applications base of the concrete. The basic process phenomena are investigated and the laser effects in terms of glaze morphology, composition and microstructure are presented. Also, the resultant heat affects are analysed and described, as well as the effects of the shield gases, O2 and Ar, during laser processing. HPDL glazing of OPC was successfully demonstrated with power densities as low as 750 W cm-2 and at scanning rates up to 480 mm min-1. The work showed that the generation of the surface glaze resulted in improved mechanical and chemical properties over the untreated OPC surface of concrete. Both untreated and HPDL glazed OPC were tested for pull-off strength, rupture strength, water absorption, wear resistance and corrosion resistance. The OPC laser glaze exhibited clear improvements in wear, water sorptivity, and resistance (up to 80% concentration) to nitric acid, sodium hydroxide and detergent. Life assessment testing revealed that the OPC laser glaze had an increase in actual wear life of 1.3 to 14.8 times over the untreated OPC surface of concrete, depending upon the corrosive environment

    Ensemble Variability of Near-Infrared-Selected Active Galactic Nuclei

    Full text link
    We present the properties of the ensemble variability VV for nearly 5000 near-infrared (NIR) AGNs selected from the catalog of Quasars and Active Galactic Nuclei (13th Ed.) and the SDSS-DR7 quasar catalog. From 2MASS, DENIS, and UKIDSS/LAS point source catalogs, we extract 2MASS-DENIS and 2MASS-UKIDSS counterparts for cataloged AGNs by catalog cross-identification. We further select variable AGNs based on an optimal criterion for selecting the variable sources. The sample objects are divided into subsets according to whether NIR light originates by optical or NIR emission in the rest frame; and we examine the correlations of the ensemble variability with the rest-frame wavelength, redshift, luminosity, and rest-frame time lag. In addition, we also examine the correlations of variability amplitude with optical variability, radio intensity, and radio-to-optical flux ratio. The rest-frame optical variability of our samples shows known negative correlations with luminosity and positive correlations with rest-frame time lag (i.e., the structure function, SF). However, no well-known negative correlation exists between the rest wavelength and optical variability. This inconsistency might be due to a biased sampling of high-redshift AGNs. NIR variability in the rest frame is anticorrelated with the rest wavelength, which is consistent with previous suggestions. However, correlations of NIR variability with luminosity and rest-frame time lag are the opposite of these correlations of the optical variability; that is, the NIR variability is positively correlated with luminosity but negatively correlated with the rest-frame time lag. Because these trends are qualitatively consistent with the properties of radio-loud quasars reported by some previous studies, most of our sample objects are probably radio-loud quasars. Finally, we also discuss the negative correlations seen in the NIR SFs.Comment: 13 pages, 10 figures, Accepted for publication in Ap

    On the Radio and Optical Luminosity Evolution of Quasars II - The SDSS Sample

    Get PDF
    We determine the radio and optical luminosity evolutions and the true distribution of the radio loudness parameter R, defined as the ratio of the radio to optical luminosity, for a set of more than 5000 quasars combining SDSS optical and FIRST radio data. We apply the method of Efron and Petrosian to access the intrinsic distribution parameters, taking into account the truncations and correlations inherent in the data. We find that the population exhibits strong positive evolution with redshift in both wavebands, with somewhat greater radio evolution than optical. With the luminosity evolutions accounted for, we determine the density evolutions and local radio and optical luminosity functions. The intrinsic distribution of the radio loudness parameter R is found to be quite different than the observed one, and is smooth with no evidence of a bi-modality in radio loudness. The results we find are in general agreement with the previous analysis of Singal et al. 2011 which used POSS-I optical and FIRST radio data.Comment: 16 pages, 17 figures, 1 table. Updated to journal version. arXiv admin note: substantial text overlap with arXiv:1101.293

    Strong lensing constraints on the velocity dispersion and density profile of elliptical galaxies

    Get PDF
    We use the statistics of strong gravitational lensing from the CLASS survey to impose constraints on the velocity dispersion and density profile of elliptical galaxies. This approach differs from much recent work, where the luminosity function, velocity dispersion and density profile were typically {\it assumed} in order to constrain cosmological parameters. It is indeed remarkable that observational cosmology has reached the point where we can consider using cosmology to constrain astrophysics, rather than vice versa. We use two different observables to obtain our constraints (total optical depth and angular distributions of lensing events). In spite of the relatively poor statistics and the uncertain identification of lenses in the survey, we obtain interesting constraints on the velocity dispersion and density profiles of elliptical galaxies. For example, assuming the SIS density profile and marginalizing over other relevant parameters, we find 168 km/s < sigma_* < 200 km/s (68% CL), and 158 km/s < sigma_* < 220 km/s (95% CL). Furthermore, if we instead assume a generalized NFW density profile and marginalize over other parameters, the slope of the profile is constrained to be 1.50 < beta < 2.00 (95% CL). We also constrain the concentration parameter as a function of the density profile slope in these models. These results are essentially independent of the exact knowledge of cosmology. We briefly discuss the possible impact on these constraints of allowing the galaxy luminosity function to evolve with redshift, and also possible useful future directions for exploration.Comment: Uses the final JVAS/CLASS sample, more careful choice of ellipticals, added discussion of possible biases. Final results essentially unchanged. Matches the MNRAS versio

    Quasar candidate selection and photometric redshift estimation based on SDSS and UKIDSS data

    Full text link
    We present a sample of 8498 quasars with both SDSS ugrizugriz optical and UKIDSS YJHKYJHK near-IR photometric data. With this sample, we obtain the median colour-z relations based on 7400 quasars with magnitude uncertainties less than 0.1mag in all bands. By analyzing the quasar colours, we propose an empirical criterion in the YKY-K vs. gzg-z colour-colour diagram to separate stars and quasars with redshift z<4z<4, and two other criteria for selecting high-z quasars. Using the SDSS-UKIDSS colour-z relations, we estimate the photometric redshifts of 8498 SDSS-UKIDSS quasars, and find that 85.0% of them are consistent with the spectroscopic redshifts within Δz<0.2|\Delta z|<0.2, which leads to a significant increase of the photometric redshift accuracy than that based on the SDSS colour-z relations only. We compare our colour selection criterion with a small UKIDSS/EDR quasar/star sample and a sample of 4671 variable sources in the SDSS Stripe 82 region with both SDSS and UKIDSS data, and find that they can be clearly divided into two classes (quasars and stars) by our criterion in the YKY-K vs. gzg-z plot. We select 3834 quasar candidates from the variable sources with g<20.5g<20.5 in Stripe 82, 826 of them being SDSS quasars and the rest without SDSS spectroscopy. We demonstrate that even at the same spectroscopy limit as SDSS, with our criterion we can at least partially recover the missing quasars with z2.7z\sim2.7 in SDSS. The SDSS identified quasars only take a small fraction (21.5%) of our quasar candidates selected from the variable sources in Stripe 82, indicating that a deeper spectroscopy is very promising in producing a larger sample of quasars than SDSS. The implications of our results to the future Chinese LAMOST quasar survey are also discussed.Comment: 13 pages, 13 figures, 2 tables, accepted for publication in MNRA
    corecore