166 research outputs found
Knot Theory: from Fox 3-colorings of links to Yang-Baxter homology and Khovanov homology
This paper is an extended account of my "Introductory Plenary talk at Knots
in Hellas 2016" conference We start from the short introduction to Knot Theory
from the historical perspective, starting from Heraclas text (the first century
AD), mentioning R.Llull (1232-1315), A.Kircher (1602-1680), Leibniz idea of
Geometria Situs (1679), and J.B.Listing (student of Gauss) work of 1847. We
spend some space on Ralph H. Fox (1913-1973) elementary introduction to diagram
colorings (1956). In the second section we describe how Fox work was
generalized to distributive colorings (racks and quandles) and eventually in
the work of Jones and Turaev to link invariants via Yang-Baxter operators, here
the importance of statistical mechanics to topology will be mentioned. Finally
we describe recent developments which started with Mikhail Khovanov work on
categorification of the Jones polynomial. By analogy to Khovanov homology we
build homology of distributive structures (including homology of Fox colorings)
and generalize it to homology of Yang-Baxter operators. We speculate, with
supporting evidence, on co-cycle invariants of knots coming from Yang-Baxter
homology. Here the work of Fenn-Rourke-Sanderson (geometric realization of
pre-cubic sets of link diagrams) and Carter-Kamada-Saito (co-cycle invariants
of links) will be discussed and expanded.
Dedicated to Lou Kauffman for his 70th birthday.Comment: 35 pages, 31 figures, for Knots in Hellas II Proceedings, Springer,
part of the series Proceedings in Mathematics & Statistics (PROMS
The Central Laser Facility at the Pierre Auger Observatory
The Central Laser Facility is located near the middle of the Pierre Auger
Observatory in Argentina. It features a UV laser and optics that direct a beam
of calibrated pulsed light into the sky. Light scattered from this beam
produces tracks in the Auger optical detectors which normally record nitrogen
fluorescence tracks from cosmic ray air showers. The Central Laser Facility
provides a "test beam" to investigate properties of the atmosphere and the
fluorescence detectors. The laser can send light via optical fiber
simultaneously to the nearest surface detector tank for hybrid timing analyses.
We describe the facility and show some examples of its many uses.Comment: 4 pages, 5 figures, submitted to 29th ICRC Pune Indi
Breast Cancer DNA Methylation Profiles Are Associated with Tumor Size and Alcohol and Folate Intake
Although tumor size and lymph node involvement are the current cornerstones of breast cancer prognosis, they have not been extensively explored in relation to tumor methylation attributes in conjunction with other tumor and patient dietary and hormonal characteristics. Using primary breast tumors from 162 (AJCC stage I–IV) women from the Kaiser Division of Research Pathways Study and the Illumina GoldenGate methylation bead-array platform, we measured 1,413 autosomal CpG loci associated with 773 cancer-related genes and validated select CpG loci with Sequenom EpiTYPER. Tumor grade, size, estrogen and progesterone receptor status, and triple negative status were significantly (Q-values <0.05) associated with altered methylation of 209, 74, 183, 69, and 130 loci, respectively. Unsupervised clustering, using a recursively partitioned mixture model (RPMM), of all autosomal CpG loci revealed eight distinct methylation classes. Methylation class membership was significantly associated with patient race (P<0.02) and tumor size (P<0.001) in univariate tests. Using multinomial logistic regression to adjust for potential confounders, patient age and tumor size, as well as known disease risk factors of alcohol intake and total dietary folate, were all significantly (P<0.0001) associated with methylation class membership. Breast cancer prognostic characteristics and risk-related exposures appear to be associated with gene-specific tumor methylation, as well as overall methylation patterns
Atmospheric Calorimetry above 10 eV: Shooting Lasers at the Pierre Auger Cosmic-Ray Observatory
The Pierre Auger Cosmic-Ray Observatory uses the earth's atmosphere as a
calorimeter to measure extensive air-showers created by particles of
astrophysical origin. Some of these particles carry joules of energy. At these
extreme energies, test beams are not available in the conventional sense. Yet
understanding the energy response of the observatory is important. For example,
the propagation distance of the highest energy cosmic-rays through the cosmic
microwave background radiation (CMBR) is predicted to be strong function of
energy. This paper will discuss recently reported results from the observatory
and the use of calibrated pulsed UV laser "test-beams" that simulate the
optical signatures of ultra-high energy cosmic rays. The status of the much
larger 200,000 km companion detector planned for the northern hemisphere
will also be outlined.Comment: 6 pages, 11 figures XIII International Conference on Calorimetry in
High Energy Physic
Calibration of Photomultiplier Tubes for the Fluorescence Detector of Telescope Array Experiment using a Rayleigh Scattered Laser Beam
We performed photometric calibration of the PhotoMultiplier Tube (PMT) and
readout electronics used for the new fluorescence detectors of the Telescope
Array (TA) experiment using Rayleigh scattered photons from a pulsed nitrogen
laser beam. The experimental setup, measurement procedure, and results of
calibration are described. The total systematic uncertainty of the calibration
is estimated to be 7.2%. An additional uncertainty of 3.7% is introduced by the
transport of the calibrated PMTs from the laboratory to the TA experimental
site.Comment: 43 pages, 15 figure
Neutrino propagation in the Earth and emerging charged leptons with
Ultra-high-energy neutrinos serve as messengers of some of the highest energy
astrophysical environments. Given that neutrinos are neutral and only interact
via weak interactions, neutrinos can emerge from sources, traverse astronomical
distances, and point back to their origins. Their weak interactions require
large target volumes for neutrino detection. Using the Earth as a neutrino
converter, terrestrial, sub-orbital, and satellite-based instruments are able
to detect signals of neutrino-induced extensive air showers. In this paper, we
describe the software code that simulates tau neutrino and
muon neutrino interactions in the Earth and predicts the spectrum of the
-lepton and muons that emerge. The outputs are lookup
tables of charged lepton exit probabilities and energies that can be used
directly or as inputs to the code designed to simulate
optical and radio signals from extensive air showers induced by the emerging
charged leptons. We describe the inputs to the code, demonstrate its
flexibility and show selected results for -lepton and muon exit
probabilities and energy distributions. The code is open
source, available on github.Comment: 42 pages, 21 figures, code available at
https://github.com/NuSpaceSim/nupypro
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
- …