101 research outputs found

    Label-free Relative Quantification of Co-eluting Isobaric Phosphopeptides of Insulin Receptor Substrate-1 by HPLC-ESI-MS/MS

    Get PDF
    Intracellular signal transduction is often regulated by transient protein phosphorylation in response to external stimuli. Insulin signaling is dependent on specific protein phosphorylation events, and analysis of insulin receptor substrate-1 (IRS-1) phosphorylation reveals a complex interplay between tyrosine, serine, and threonine phosphorylation. The phospho-specific antibody-based quantification approach for analyzing changes in site-specific phosphorylation of IRS-1 is difficult due to the dearth of phospho-antibodies compared with the large number of known IRS-1 phosphorylation sites. We previously published a method detailing a peak area-based mass spectrometry approach, using precursor ions for peptides, to quantify the relative abundance of site-specific phosphorylation in the absence or presence of insulin. We now present an improvement wherein site-specific phosphorylation is quantified by determining the peak area of fragment ions respective to the phospho-site of interest. This provides the advantage of being able to quantify co-eluting isobaric phosphopeptides (differentially phosphorylated versions of the same peptide), allowing for a more comprehensive analysis of protein phosphorylation. Quantifying human IRS-1 phosphorylation sites at Ser303, Ser323, Ser330, Ser348, Ser527, and Ser531 shows that this method is linear (n = 3; r2 = 0.85 ± 0.05, 0.96 ± 0.01, 0.96 ± 0.02, 0.86 ± 0.07, 0.90 ± 0.03, 0.91 ± 0.04, respectively) over an approximate 10-fold range of concentrations and reproducible (n = 4; coefficient of variation = 0.12, 0.14, 0.29, 0.30, 0.12, 0.06, respectively). This application of label-free, fragment ion-based quantification to assess relative phosphorylation changes of specific proteins will prove useful for understanding how various cell stimuli regulate protein function by phosphorylation

    Physical activity and FTO genotype by physical activity interactive influences on obesity

    Get PDF
    Background: Although the effect of the fat mass and obesity-associated (FTO) gene on adiposity is well established, there is a lack of evidence whether physical activity (PA) modifies the effect of FTO variants on obesity in Latino populations. Therefore, the purpose of this study was to examine PA influences and interactive effects between FTO variants and PA on measures of adiposity in Latinos. Results: After controlling for age and sex, participants who did not engage in regular PA exhibited higher BMI, fat mass, HC, and WC with statistical significance (P \u3c 0.001). Although significant associations between the three FTO genotypes and adiposity measures were found, none of the FTO genotype by PA interaction assessments revealed nominally significant associations. However, several of such interactive influences exhibited considerable trend towards association. Conclusions: These data suggest that adiposity measures are associated with PA and FTO variants in Latinos, but the impact of their interactive influences on these obesity measures appear to be minimal. Future studies with large sample sizes may help to determine whether individuals with specific FTO variants exhibit differential responses to PA interventions

    Physical activity and FTO genotype by physical activity interactive influences on obesity

    Get PDF
    Abstract Background Although the effect of the fat mass and obesity-associated (FTO) gene on adiposity is well established, there is a lack of evidence whether physical activity (PA) modifies the effect of FTO variants on obesity in Latino populations. Therefore, the purpose of this study was to examine PA influences and interactive effects between FTO variants and PA on measures of adiposity in Latinos. Results After controlling for age and sex, participants who did not engage in regular PA exhibited higher BMI, fat mass, HC, and WC with statistical significance (P < 0.001). Although significant associations between the three FTO genotypes and adiposity measures were found, none of the FTO genotype by PA interaction assessments revealed nominally significant associations. However, several of such interactive influences exhibited considerable trend towards association. Conclusions These data suggest that adiposity measures are associated with PA and FTO variants in Latinos, but the impact of their interactive influences on these obesity measures appear to be minimal. Future studies with large sample sizes may help to determine whether individuals with specific FTO variants exhibit differential responses to PA interventions

    Reproducibility of an HPLC-ESI-MS/MS Method for the Measurement of Stable-Isotope Enrichment of in Vivo-Labeled Muscle ATP Synthase Beta Subunit

    Get PDF
    We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase β subunit (β-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from a rat infused with stable-isotope-labeled leucine. The muscle was homogenized, β-F1-ATPase immunoprecipitated, and the protein was resolved using 1D-SDS PAGE. Following trypsin digestion of the isolated protein, the resultant peptide mixtures were subjected to analysis by HPLC-ESI-MS/MS, which resulted in the detection of multiple β-F1-ATPase peptides. There were three β-F1-ATPase unique peptides with a leucine residue in the amino acid sequence, and which were detected with high intensity relative to other peptides and assigned with >95% probability to β-F1-ATPase. These peptides were specifically targeted for fragmentation to access their stable-isotope enrichment based on MS/MS peak areas calculated from extracted ion chromatographs for selected labeled and unlabeled fragment ions. Results showed best linearity (R2 = 0.99) in the detection of MS/MS peak areas for both labeled and unlabeled fragment ions, over a wide range of amounts of injected protein, specifically for the β-F1-ATPase134-143 peptide. Measured stable-isotope enrichment was highly reproducible for the β-F1-ATPase134-143 peptide (CV = 2.9%). Further, using mixtures of synthetic labeled and unlabeled peptides we determined that there is an excellent linear relationship (R2 = 0.99) between measured and predicted enrichment for percent enrichments ranging between 0.009% and 8.185% for the β-F1-ATPase134-143 peptide. The described approach provides a reliable approach to measure the stable-isotope enrichment of in-vivo-labeled muscle β-F1-ATPase based on the determination of the enrichment of the β-F1-ATPase134-143 peptide

    Gestational Diabetes Is Characterized by Reduced Mitochondrial Protein Expression and Altered Calcium Signaling Proteins in Skeletal Muscle

    Get PDF
    The rising prevalence of gestational diabetes mellitus (GDM) affects up to 18% of pregnant women with immediate and long-term metabolic consequences for both mother and infant. Abnormal glucose uptake and lipid oxidation are hallmark features of GDM prompting us to use an exploratory proteomics approach to investigate the cellular mechanisms underlying differences in skeletal muscle metabolism between obese pregnant women with GDM (OGDM) and obese pregnant women with normal glucose tolerance (ONGT). Functional validation was performed in a second cohort of obese OGDM and ONGT pregnant women. Quantitative proteomic analysis in rectus abdominus skeletal muscle tissue collected at delivery revealed reduced protein content of mitochondrial complex I (C-I) subunits (NDUFS3, NDUFV2) and altered content of proteins involved in calcium homeostasis/signaling (calcineurin A, α1-syntrophin, annexin A4) in OGDM (n = 6) vs. ONGT (n = 6). Follow-up analyses showed reduced enzymatic activity of mitochondrial complexes C-I, C-III, and C-IV (−60–75%) in the OGDM (n = 8) compared with ONGT (n = 10) subjects, though no differences were observed for mitochondrial complex protein content. Upstream regulators of mitochondrial biogenesis and oxidative phosphorylation were not different between groups. However, AMPK phosphorylation was dramatically reduced by 75% in the OGDM women. These data suggest that GDM is associated with reduced skeletal muscle oxidative phosphorylation and disordered calcium homeostasis. These relationships deserve further attention as they may represent novel risk factors for development of GDM and may have implications on the effectiveness of physical activity interventions on both treatment strategies for GDM and for prevention of type 2 diabetes postpartum

    Pulmonary Arterial Hypertension Induces a Distinct Signature of Circulating Metabolites

    No full text
    Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore