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Physical activity and FTO genotype by
physical activity interactive influences on
obesity
Joon Young Kim1, Jacob T. DeMenna2, Sobha Puppala3, Geetha Chittoor4, Jennifer Schneider3,
Ravindranath Duggirala5, Lawrence J. Mandarino2,6, Gabriel Q. Shaibi1,6,7 and Dawn K. Coletta2,6*

Abstract

Background: Although the effect of the fat mass and obesity-associated (FTO) gene on adiposity is well established,
there is a lack of evidence whether physical activity (PA) modifies the effect of FTO variants on obesity in Latino
populations. Therefore, the purpose of this study was to examine PA influences and interactive effects between FTO
variants and PA on measures of adiposity in Latinos.

Results: After controlling for age and sex, participants who did not engage in regular PA exhibited higher BMI, fat
mass, HC, and WC with statistical significance (P < 0.001). Although significant associations between the three FTO
genotypes and adiposity measures were found, none of the FTO genotype by PA interaction assessments revealed
nominally significant associations. However, several of such interactive influences exhibited considerable trend towards
association.

Conclusions: These data suggest that adiposity measures are associated with PA and FTO variants in Latinos, but the
impact of their interactive influences on these obesity measures appear to be minimal. Future studies with large
sample sizes may help to determine whether individuals with specific FTO variants exhibit differential responses to PA
interventions.
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Background
There has been a global increase in the prevalence of
obesity across all age groups and it has become a serious
health problem as it contributes to the increasing bur-
den of obesity-related comorbid health conditions such
as type 2 diabetes and cardiovascular disease [1]. It is
well established that individual susceptibility to obesity
is determined by the interplay between a genetic compo-
nent and environmental factors [2]. Since the first identi-
fication of the fat mass and obesity-associated (FTO) as
an obesity-susceptibility gene by Frayling et al. [3], nu-
merous genome-wide association studies (GWAS) have
been performed in order to confirm the association be-
tween FTO single nucleotide polymorphisms (SNPs) and

obesity-related phenotypes in several populations [4, 5].
More recently, we demonstrated significant heritability
estimates of obesity-related phenotypes in our Latino
population, and confirmed strong associations to
obesity-related traits for the FTO SNPs [6].
With consistent replications of the associations be-

tween FTO genetic variants and obesity-related pheno-
types, it is of growing interest whether these genetic
effects on obesity are modified by lifestyle factors such
as physical activity (PA). Although some studies have
not observed interaction effects between PA and the
FTO SNPs on obesity [7, 8], a detailed meta-analysis by
Kilpelainen et al. supports the rigid evidence that PA
attenuates the effect of the FTO genetic variants on
obesity by analyzing data from 218,166 adults from 45
studies [9]. However, to date, there is a lack of evidence
in Latinos who are known as a higher risk population
for obesity and type 2 diabetes [10]. Although there are
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a handful of studies with mixed populations, includ-
ing Latinos, these studies including our own [6], have
only examined the association between FTO genetic
variants and obesity-related phenotypes such as body
mass index (BMI), waist circumference, or body com-
position [5, 11–13].
Therefore, the purpose of this study is to examine

whether regular PA modifies the effect of the variations
in the FTO gene on obesity risk, as measured by BMI,
fat mass, hip circumference, and waist circumference in
a Latino population.

Results
The descriptive characteristics of the study participants
have been reported previously [7]. Briefly, among 667
participants with mean age of 31.7 ± 13.4 (aged 7–85
years old), 80 % of the study population were adults
(>18 years old) and 61 % were female. The prevalence of
type 2 diabetes in our population was 12.3 and 34 % of
the participants were classified with prediabetes (im-
paired fasting glucose or impaired glucose tolerance).
The FTO SNP association analysis data from our previ-
ous study [7] demonstrated that the three FTO SNPs
(rs3751812, rs8050136, and rs9939609) were in the
HWE and in strong LD with r2 ranging from 0.87 to
0.98. The minor allele frequencies of the three FTO
SNPs ranged from approximately 23 to 26 %. Briefly, as
shown previously [7], heritability estimates for BMI, hip
circumference, and waist circumference were signifi-
cantly moderate in magnitude (range 0.34–0.39) and
those phenotypes were significantly associated with FTO
SNPs (rs3751812, rs8050136, and rs9939609). In addition,
in the current study, heritability estimates for fat mass was
determined using SOLAR and was also moderate in magni-
tude and significant (h2 = 0.43 ± 0.11, P < 0.0001). Minor al-
leles of the three FTO SNPs (rs3751812 [T], rs8050136 [A],
and rs9939609 [A]) were significantly associated with
higher levels of fat mass (all P < 0.01). There were no
significant association between three FTO SNPs and
PA [PA-Yes and PA-No] (rs3751812: P = 0.645,
rs8050136: P = 0.541, and rs9939609: P = 0.538).

Effect of PA on obesity-related phenotypes
The descriptive characteristics by PA group are pre-
sented in Table 1. The number of participants who re-
ported that they participated in regular PA was 389
(58.9 %), while 271 (41.1 %) reported that they did not
participate in regular PA. Participants who participated
in regular PA were slightly younger and more likely to
be males (Table 1). After adjusting for the covariate
effects of age and sex, participants who engaged in the
regular PA exhibited significantly lower BMI, fat mass, hip
circumference and waist circumferences, all P < 0.05 when
compared to those who did not engage in the regular PA.
Likewise, in all heritability analyses, which accounted for
age and sex effects, the covariate screening found that
PA is a strong correlate of BMI (P = 0.002), fat mass
(P = 0.00007), hip circumference (P = 0.004), and waist
circumference (P = 0.00006).

Interaction effect of the three FTO SNPs and PA on
obesity-related phenotypes
Table 2 describes the interaction effects of the three
FTO SNPs and PA on BMI, fat mass, hip circumference,
and waist circumference after adjusting for age and sex.
None of the interaction terms were found to be signifi-
cant (P < 0.05) as revealed by the genetic analyses. How-
ever, a trend can be seen toward significance in the
interaction effects between the three FTO SNPs and PA
on BMI, fat mass, and hip circumference. For example,
regarding the SNP rs3751812, its interactive influences
with PA on BMI are suggestive (P = 0.08). As shown in
Table 2 and Fig. 1, a trend can be observed wherein the
carriers of FTO minor (risk) alleles at the three exam-
ined loci who are engaged in regular PA are at reduced
obesity risk compared to those rare variants carriers
who are associated with decreased levels of PA. For ex-
ample, regarding the marker rs3751812, after taking the
SNP and interaction influences into account, the car-
riers of risk allele “T” engaged in regular PA exhibited
reduced obesity risk as shown by the effects in units of
BMI (SE) by risk allele carrier status compared to those
not engaged in regular PA: Heterozygous carriers: PA-

Table 1 Descriptive characteristics of participants by groups (“yes” responders vs. “no” responders at regular PA questionaire)a

PA-Yes (n = 389) PA-No (n = 271) Total (n = 660) P-value

Age (years) 31.1 ± 13.6 33.1 ± 13.0 31.7 ± 13.4 0.053

Sex (male/female), n (%) 186 (48)/203 (52) 71 (26)/186 (74) 260 (39)/407 (61) <0.001

BMI (kg/m2)b 27.9 ± 6 30.1 ± 7.3 28.8 ± 6.6 <0.001

Fat mass (kg)b 20.4 ± 10.3 25.4 ± 12.1 22.4 ± 11.3 <0.001

Hip circumference (cm)b 104.6 ± 12.4 108.5 ± 14.6 106.1 ± 13.5 <0.01

Waist circumference (cm)b 93.3 ± 15.2 98.5 ± 16.8 95.3 ± 16.1 <0.001

Data are mean ± SD unless otherwise indicated. A total of 667 participants participated in the study. Of the 667 participants, data for PA questionnaire, body mass
index (BMI), fat mass, hip circumference and waist circumference were not available for 7, 3, 8, 7, and 7, respectively
aNot accounted for the relatedness of study participants; bAdjusted for age and sex effects
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Yes = 0.855 ± 0.254 versus PA-No = 2.729 ± 0.703 and
Homozygous carriers: PA-Yes = 1.791 ± 0.507 versus
PA-No = 5.457 ± 1.406.
When the three genotype categories of a given SNP

were dichotomized as risk allele carriers (at least more
than one risk allele) vs. no carriers; the carriers of the
rare allele who participated in regular PA exhibited more

clearer pattern of low obesity risk compared to those
carriers that did not engage with regular PA (data not
shown). As reported in Fig. 1, individuals with minor/
minor alleles (considered as carrying two risk alleles)
who were engaged in regular PA exhibited the largest
reduction at BMI, fat mass, and hip circumference
compared to the counterparts (21, 46, and 10 %,

Table 2 Interaction between PA and FTO SNPs on adiposity-related phenotype

SNP rs no. Phenotype Major/major Major/minor Minor/minor Pa

PA_Yes PA_No PA_Yes PA_No PA_Yes PA_No

rs3751812 (G/T) BMI 27.8 ± 6.1 28.9 ± 6.4 28.2 ± 5.7 31.2 ± 7.1 30.9 ± 4.8 37.3 ± 8.3 0.08

Fat mass 20.2 ± 10.9 24.2 ± 11.6 21.1 ± 9.7 27.5 ± 12.8 26.3 ± 8.5 38.4 ± 16.5 0.12

HC 104.2 ± 12.7 106.5 ± 13.3 105.5 ± 11.5 110.9 ± 13.7 111.2 ± 9.8 122.7 ± 16.1 0.13

WC 92.7 ± 15.3 96.5 ± 16.3 94.2 ± 14.7 100.4 ± 16.1 102.5 ± 13.3 111.5 ± 19.4 0.46

rs8050136 (C/A) BMI 28.0 ± 6.1 28.9 ± 6.5 27.9 ± 5.7 30.9 ± 7.0 30.7 ± 4.9 34.7 ± 9.0 0.14

Fat mass 20.5 ± 11.0 24.4 ± 11.8 20.6 ± 9.7 27.1 ± 12.6 25.4 ± 8.6 33.2 ± 17.4 0.10

HC 104.6 ± 12.5 106.6 ± 13.4 104.8 ± 12.0 110.4 ± 13.7 109.9 ± 10.0 118.3 ± 16.8 0.14

WC 92.9 ± 15.2 96.8 ± 16.6 93.8 ± 14.9 100.0 ± 15.9 100.7 ± 14.3 105.8 ± 20.8 0.61

rs9939609 (T/A) BMI 27.9 ± 6.2 28.8 ± 6.4 28.0 ± 5.7 30.9 ± 7.0 30.6 ± 4.8 34.7 ± 9.0 0.60

Fat mass 20.4 ± 11.1 24.3 ± 11.8 20.8 ± 9.6 27.1 ± 11.8 25.3 ± 8.4 33.2 ± 17.4 0.17

HC 104.4 ± 12.8 106.4 ± 13.2 105.0 ± 11.7 110.3 ± 13.6 109.9 ± 9.7 118.3 ± 16.8 0.21

WC 92.7 ± 15.5 96.6 ± 16.6 94.1 ± 14.6 100.0 ± 15.8 100.2 ± 14.1 105.8 ± 20.8 0.78

Data are mean ± SD unless otherwise indicated. SNP rs no (Major allele/Minor allele) and bold allele indicates risk allele; BMI, body mass index; HC, hip
circumference; WC, waist circumference. rs3751812 (major allele [G]; minor allele [T]); rs8050136 (major allele [C]; minor allele [A]); rs9939609 (major allele [T];
minor allele [A])
aP-values from the genetic analyses regarding the significance of the intercation terms

Fig. 1 Interaction between PA and FTO SNP rs3751812 on adiposity-related phenotypes. Major allele (G)/minor allele (T); minor allele T considered
risk allele
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respectively). Thus, the homozygous carriers of the
minor alleles with no PA appear to be at greater risk for
obesity compared to the others.

Discussion
In the present study, we demonstrated that the obesity
measures BMI, fat mass, hip circumference, and waist
circumference are correlated with PA as well as with
three FTO variants, and that there was some trend to-
ward significance in the interaction effects between PA
and FTO genetic variants on these four obesity-related
phenotypes in a Latino population. Participants who did
not engage in regular physical activity and were carriers
of risk allele (minor allele) in the FTO gene exhibited
higher BMI, fat mass, and hip circumference, although
such relationships lacked statistical significance. In
addition to confirming previous association studies in
FTO related obesity risk; our data further suggest that
PA may modify the genetic effect of FTO on the obesity-
related risk in Latino children and adults, given that the
examined FTO variants are not associated with PA in
our sample.
FTO is the fat mass and obesity-associated gene but, in

spite of its name, the exact physiological function of FTO
is not well known. The human FTO gene is a 9-exon gene
(covering more than 400,000 base pairs) located on hu-
man chromosome 16 and encodes a 2-oxoglutarate-
dependent nucleic acid demethylase [14]. It has been
widely demonstrated that the FTO gene may play an
important role in energy homeostasis by regulating either
energy expenditure or energy intake in humans [15, 16].
In addition, FTO has been described as a regulator of adi-
pose tissue metabolism (i.e. lipolysis), as it contributes to
the regulation of fat mass [17]. Further, a recent review
not only supports the physiological role of FTO, but also
introduces the novel biological function of FTO in epigen-
etic regulation [18]. Continuous efforts have been con-
ducted to further clarify the functional role of FTO and it
seems that previous work may reasonably support the
mechanism underlying the link between FTO genetic vari-
ants and obesity.
The association between FTO genetic variants and

obesity has been well replicated and established across
ethnicities, but the main focus has been on those of Euro-
pean ancestry [3, 4]. Although limited data have been re-
ported in Latino populations, several studies ( GWAS and
replication studies) with mixed populations including Lati-
nos have also exhibited the association between FTO
genetic variants and obesity measures [5, 11–13, 19]. Scu-
teri et al. [5] first found the SNP rs9930506 in relation to
BMI, hip circumference, and weight in 839 Hispanic
American in the GenNet study. Other groups have
attempted not only to replicate previous findings, but also
to find more associations of FTO SNPs with other

adiposity-associated variables such as computed
tomography-derived measures of adiposity [11], adipose
tissue distribution [13], and measures of glucose homeo-
stasis [19] in multi-ethnic groups including Hispanic
populations. Recently, we demonstrated significant herit-
ability estimates of obesity-related phenotypes in our
Latino population, and confirmed strong associations to
obesity-related traits for the FTO SNPs [6].
As previously mentioned, lifestyle factors such as PA

and diet contribute to the obesity epidemic and may
interact with genetic effects to modify the risk for obes-
ity [20]. A growing number of studies have recently ex-
amined whether there are interaction effects between
those lifestyle factors and FTO genetic variants on obes-
ity risk. Interestingly, in terms of food intake and weight
control, many studies have been in agreement with not
only the association between FTO genetic variants and
food intake [21] or increased appetite [22], but also the
interaction effects of diet components with FTO SNPs
on obesity risk [23]. In addition, a growing number of
studies have reported that physical inactivity confers an
increased risk of FTO genetic predisposition to obesity
while physically active participants who have risk allele(s)
of FTO SNPs exhibited lower risk for obesity [9, 24].
These data suggest that PA may be a moderator of the
deleterious (i.e. risk-increasing) effects of FTO genetic var-
iants on the risk for obesity. Our data suggest that regular
PA may modify the effect of FTO genetic contribution to
the obesity risk including BMI, fat mass, and hip circum-
ference. It is possible that changes in waist and hip cir-
cumferences in response to regular PA or exercise may
differ by sex [25]. Since the proportion of females in this
study was 61 %, we did somewhat expect that the inter-
action effects of PA may differ between hip circumference
and waist circumference.
To our knowledge, the majority of interaction studies

have focused on European populations [9, 26] and a lack
of data exist in the Latino population, even though it is
well established that Latinos are at increased risk for
obesity and type 2 diabetes [10]. Therefore, our data are
relevant as we exclusively focused on Latino children
and adults. In the current study, it is important to note
that participants were asked whether they engage in
regular PA. We did not measure PA levels nor did we
define active or inactive individuals based upon some
established reference such as the 2008 Physical Activity
Guidelines for Americans, a scientific evidence-based up-
date on the health benefits of a physically active lifestyle,
released by the U.S. Department of Health and Human
Services [27]. Our interpretation of moderating regular
PA effect on the association between FTO genetic vari-
ants and obesity may provide a more realistic message to
minority populations, suggesting that regular or habitual
PA, of any amount, may be more effective at attenuating
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the FTO genetic effects on obesity than recommending
a specific amount of PA that may be tied to general
health [28]. Therefore, from a clinical or public health
perspective, our data may help to emphasize the import-
ance of daily healthy lifestyle or behaviors for reducing
the genetic predisposition for obesity risk.
Despite these strengths, we do acknowledge potential

limitations in our data which should be considered for
proper interpretation of our findings. Two notable limi-
tations are the small sample size used to assess inter-
action influences in this study compared to those used
in the current large-scale association studies [29], and
the use of the questionnaire-based PA assessment which
can be affected by study participant recall bias [30]. It
should be noted that the PA questionnaire used in the
present study does not allow quantify how much PA is
needed to reduce the effect of FTO on obesity-
associated phenotypes. Given the issue of small sample
size and low power, further studies of a larger cohort are
warranted to detect lifestyle effects including PA as a
moderator on the genetic effects of obesity. Also, we do
not know whether the interaction effects are over- or
under-estimated because of the accuracy of PA measure-
ment [31]. Participants’ PA levels in the current study
were simply measured by participant recall, which was
not objectively quantified. Since our main purpose of the
AIR registry is to develop a biorepository to examine
cardiometabolic disease risk in the Latino population
[32], lack of detailed information exists in the screening
of lifestyle or environmental factors such as PA, diet/nu-
trition, and socioeconomic status. However, our data
provide evidence for the utility of a simple PA screener
in comparing obesity risk factors between PA groups,
suggesting that current PA screeners can be used to ex-
plore the interaction effects of genetic variants on the
obesity measures.

Conclusions
Our study highlights the possibility that genetic suscepti-
bility to obesity may be modified by engaging in regular
physical activity (regardless of whether an individual
meets current PA guidelines). From a public health per-
spective, our findings are highly relevant with respect to
our focus on a Latino population with disproportionately
increased risk for obesity and type 2 diabetes [33–36]. It
is likely that this group is genetically predisposed to
obesity and obesity-related comorbid conditions. En-
couraging any physical activity in genetically susceptible
individuals in order to mitigate the deleterious effects of
obesity on health may be a more effective approach. Fu-
ture studies are warranted to examine whether there are
age- or sex-specific differences in the extent of inter-
action effects or whether individuals with specific FTO
variants exhibit differential response to PA interventions.

Methods
Participants
Data from 667 Latino children and adults (aged 7–85
years old) from the Arizona Insulin Resistance (AIR)
registry were used in the present analysis. The principal
investigator and the ad hoc scientific steering committee
of the AIR registry granted access to the specimen and
data for this study. A description of the registry, the
phenotypic characterization of the AIR participants and
the procedures for gaining access to the data have been
discussed in detail elsewhere [32]. Briefly, of the 667 par-
ticipants enrolled in the study, 365 were distributed
across 92 families from the AIR registry. The 365 partici-
pants from 92 families generated 723 relative pairs that
were distributed across fourteen relative-pair categories
[6]. The remaining 302 participants were found to be rep-
resented by single individuals. The institutional review
board of Arizona State University approved all procedures,
and all subjects gave informed written consent before any
research procedures. Once youth (ages 7–18 year old)
were in agreement for the participation, written consents
(child assent and parental consent) were obtained.

Measurements, physical activity questionnaire, and SNP
genotyping data
Participants arrived at the Arizona State University Clin-
ical Research Unit after an overnight fast followed by
screening of their medical history. Additionally, partici-
pants were asked whether they are engaged in regular
physical activity (i.e. participants answered either yes or
no). A complete intake questionnaire used in the AIR
registry is shown in Additional file 1. Six-hundred and
sixty participants had complete PA data. Anthropometric
measurements included height, weight, BMI, hip circum-
ference, and waist circumference. Bioelectrical impedance
analysis was performed to estimate body composition (fat
mass). All procedures were approved by the institutional
review board of Arizona State University and all partici-
pants gave informed written consent before their
participation.
Participants were divided into two PA groups (PA-Yes;

participants who engaged in the regular PA vs. PA-No;
those who did not engaged in regular PA) for analysis of
the main effect of PA on obesity risk as well as the inter-
action effect of PA with FTO SNPs on obesity risk. To
normalize the distributions for genetic analyses, BMI, fat
mass, waist and hip circumferences were transformed
using inverse normalization. Untransformed data are
presented for ease of interpretation.

The SNP genotyping association analysis for the FTO
variants (rs3751812, rs8050136, and rs9939609) with adi-
posity measures (excluding fat mass) have been previously
published [6]. The FTO SNP data for all participants was
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used in the present study to determine the interaction ef-
fect with PA on measures of adiposity.

Statistical analysis
All statistical genetic analyses were performed using the
variance components (VC) approach as implemented in
the software package Sequential Oligogenic Linkage Ana-
lysis Routines (SOLAR) [solar.txbiomedgenetics.org] [37].
The heritability of a given phenotype is determined using
the VC technique (SOLAR), and a likelihood ratio test is
used to test whether the heritability of a given phenotype
is significant (P < 0.05). Covariates age and sex are simul-
taneously controlled for in all analyses. In addition, all
models included PA as a covariate, and a likelihood ratio
test is used to assess its significance (P < 0.05).
The associations between the FTO genotypes and adi-

posity related quantitative traits are examined using the
measured genotype approach (variance components
[VC] MGA) within the analytical framework, which al-
lows us to account for the non-independence among
family members [37, 38]. Our previous association ana-
lyses for the FTO variants has been described in detail
elsewhere [6]. Briefly, in the VC approach, variance com-
ponents are modeled as random effects, whereas the ef-
fects of measured covariates such as age and sex are
modeled as fixed effects on the trait mean. The variant
genotypes are incorporated in the mean effects model as
a measured covariate assuming additivity of allelic effects
[38]. Maximum likelihood techniques are used to esti-
mate the variance components, the association parame-
ters, and the other covariate effects. The hypothesis of
no association is tested by comparing the likelihood of a
model, in which the effect of the measured genotype is
estimated with a model, where the effect of the mea-
sured genotype is fixed at zero. We have extended this
approach to assess genotype x PA interaction influence
on a given obesity measure by allowing SNP genotype,
PA, and SNP genotype x PA interaction as fixed effects.
All analyses included age and sex terms as additional co-
variates. The hypothesis of no interaction between SNP
genotype and PA on a given obesity measure is tested by
comparing the likelihood of a model, in which the effect
of the interaction term is estimated with a model, where
the effect of the interaction term is fixed at zero. For these
analyses (i.e., association or interaction), P values < 0.05
are considered statistically significant.

SOLAR was also used to calculate the allele frequen-
cies, to test deviations from Hardy-Weinberg Equilib-
rium (HWE), and to estimate linkage disequilibrium
(LD) between SNP pairs using r2 values. For the purpose
of illustration, at some instances, data are described
using the program SPSS without taking the relatedness
of study participants into account.

Additional file

Additional file 1: Intake questionnaire. (DOC 51 kb)
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