9,223 research outputs found

    Flutter Clearance of the F-14A Variable-Sweep Transition Flight Experiment Airplane, Phase 2

    Get PDF
    An F-14A aircraft was modified for use as the test-bed aircraft for the variable-sweep transition flight experiment (VSTFE) program. The VSTFE program was a laminar flow research program designed to measure the effects of wing sweep on laminar flow. The airplane was modified by adding an upper surface foam and fiberglass glove to the right wing. An existing left wing glove had been added for the previous phase of the program. Ground vibration and flight flutter testing were accomplished to verify the absence of aeroelastic instabilities within a flight envelope of Mach 0.9 or 450 knots, calibrated airspeed, whichever was less. Flight test data indicated satisfactory damping levels and trends for the elastic structural modes of the airplane. Ground vibration test data are presented along with in-flight frequency and damping estimates, time histories and power spectral densities of in-flight sensors, and pressure distribution data

    A thing of beauty: Structure and function of insulin's "aromatic triplet"

    Get PDF
    The classical crystal structure of insulin was determined in 1969 by D.C. Hodgkin et al. following a 35-year program of research. This structure depicted a hexamer remarkable for its self-assembly as a zinc-coordinated trimer of dimer. Prominent at the dimer interface was an "aromatic triplet" of conserved residues at consecutive positions in the B chain: PheB24 , PheB25 and TyrB26 . The elegance of this interface inspired the Oxford team to poetry: "A thing of beauty is a joy forever" (John Keats as quoted by Blundell, T.L., et al. Advances in Protein Chemistry 26:279-286 [1972]). Here, we revisit this aromatic triplet in light of recent advances in the structural biology of insulin bound as a monomer to fragments of the insulin receptor. Such co-crystal structures have defined how these side chains pack at the primary hormone-binding surface of the receptor ectodomain. On receptor binding, the B-chain β-strand (residues B24-B28) containing the aromatic triplet detaches from the α-helical core of the hormone. Whereas TyrB26 lies at the periphery of the receptor interface and may functionally be replaced by a diverse set of substitutions, PheB24 and PheB25 engage invariant elements of receptor domains L1 and αCT. These critical contacts were anticipated by the discovery of diabetes-associated mutations at these positions by Donald Steiner et al. at the University of Chicago. Conservation of PheB24 , PheB25 and TyrB26 among vertebrate insulins reflects the striking confluence of structure-based evolutionary constraints: foldability, protective self-assembly and hormonal activity

    Annotation of Heterogenous Media Using OntoMedia

    No full text
    While ontologies exist for the annotation of monomedia, interoperability between these schemes is an important issue. The OntoMedia ontology consists of a generic core, capable of representing a diverse range of media, as well as extension ontologies to focus on specific formats. This paper provides an overview of the OntoMedia ontologies, together with a detailed case study when applied to video, a scripted form, and an associated short story

    Finite-volume scheme for transonic potential flow about airfoils and bodies in an arbitrarily shaped channel

    Get PDF
    A conservative finite-volume difference scheme is developed for the potential equation to solve transonic flow about airfoils and bodies in an arbitrarily shaped channel. The scheme employs a mesh which is a nearly conformal O mesh about the airfoil and nearly orthogonal at the channel walls. The mesh extends to infinity upstream and downstream, where the mapping is singular. Special procedures are required to treat the singularities at infinity, including computation of the metrics near those points. Channels with exit areas different from inlet areas are solved; a body with a sting mount is an example of such a case

    Over-the-Rotor Liner Investigation via the NASA Langley Normal Incidence Tube

    Get PDF
    NASA Langley and Glenn Research Centers have collaborated on the usage of acoustic liners mounted very near or directly over the rotor of turbofan aircraft engines. This collaboration began over a decade ago with the investigation of a metallic foam liner. Similar to conventional acoustic liner applications, this liner was designed to absorb sound generated by the rotor-alone and rotor-stator interaction sources within the fan duct. Given its proximity to the rotor tips, the expectation was that the liner would also serve as a pressure release and thereby inhibit the amount of noise generated. Initial acoustic results were promising, but there was concern regarding potential aerodynamic penalties. Nevertheless, there were sufficient positive results to warrant further investigation. To that end, the current report presents results obtained in the NASA Langley Normal Incidence Tube for 20 acoustic liner candidates for the OTR application. The majority contain grooves at their surface, designed to minimize aerodynamic penalties caused by placing the liner in close proximity to the fan rotor tips. The intent is to assess the acoustic properties of each liner configuration, and in particular to assess the effects of including the grooves on the overall acoustic performance. An additional intent of this paper is to provide documentation regarding recent enhancements to the NASA Langley Normal Incidence Tube

    Segmented waveguides in thin silicon-on-insulator

    Get PDF
    We have developed new silicon-on-insulator waveguide designs for simultaneously achieving both low-loss optical confinement and electrical contacts, and we present a design methodology based on calculating the Bloch modes of such segmented waveguides. With this formalism, waveguides are designed in a single thin layer of silicon-on-insulator to achieve both optical confinement and minimal insertion loss. Waveguides were also fabricated and tested, and the measured data were found to closely agree with theoretical predictions, demonstrating input insertion loss and propagation loss better than 0.1 dB and -16 dB/cm, respectively

    Landmarks in Insulin Research

    Get PDF
    Ever since the discovery of insulin and its role in the regulation of glucose uptake and utilization, there has been great interest in insulin, its structure and the way in which it interacts with its receptor and effects signal transduction. As the 90th anniversary of the discovery of insulin approaches, it is timely to provide an overview of the landmark discoveries relating to the structure and function of this remarkable molecule and its receptor
    corecore