5,027 research outputs found

    Factors determining exchange rates : a simple model and empirical tests

    Get PDF
    An abstract for this article is not availableEquilibrium (Economics)

    Multiconfiguration Time-Dependent Hartree-Fock Treatment of Electronic and Nuclear Dynamics in Diatomic Molecules

    Full text link
    The multiconfiguration time-dependent Hartree-Fock (MCTDHF) method is formulated for treating the coupled electronic and nuclear dynamics of diatomic molecules without the Born- Oppenheimer approximation. The method treats the full dimensionality of the electronic motion, uses no model interactions, and is in principle capable of an exact nonrelativistic description of diatomics in electromagnetic fields. An expansion of the wave function in terms of configurations of orbitals whose dependence on internuclear distance is only that provided by the underlying prolate spheroidal coordinate system is demonstrated to provide the key simplifications of the working equations that allow their practical solution. Photoionization cross sections are also computed from the MCTDHF wave function in calculations using short pulses.Comment: Submitted to Phys Rev

    Room-temperature ballistic transport in narrow graphene strips

    Full text link
    We investigate electron-phonon couplings, scattering rates, and mean free paths in zigzag-edge graphene strips with widths of the order of 10 nm. Our calculations for these graphene nanostrips show both the expected similarity with single-wall carbon nanotubes (SWNTs) and the suppression of the electron-phonon scattering due to a Dirichlet boundary condition that prohibits one major backscattering channel present in SWNTs. Low-energy acoustic phonon scattering is exponentially small at room temperature due to the large phonon wave vector required for backscattering. We find within our model that the electron-phonon mean free path is proportional to the width of the nanostrip and is approximately 70 Ό\mum for an 11-nm-wide nanostrip.Comment: 5 pages and 5 figure

    Random walk on the range of random walk

    Get PDF
    We study the random walk X on the range of a simple random walk on â„€ d in dimensions d≄4. When d≄5 we establish quenched and annealed scaling limits for the process X, which show that the intersections of the original simple random walk path are essentially unimportant. For d=4 our results are less precise, but we are able to show that any scaling limit for X will require logarithmic corrections to the polynomial scaling factors seen in higher dimensions. Furthermore, we demonstrate that when d=4 similar logarithmic corrections are necessary in describing the asymptotic behavior of the return probability of X to the origin

    The Lazy Bureaucrat Scheduling Problem

    Full text link
    We introduce a new class of scheduling problems in which the optimization is performed by the worker (single ``machine'') who performs the tasks. A typical worker's objective is to minimize the amount of work he does (he is ``lazy''), or more generally, to schedule as inefficiently (in some sense) as possible. The worker is subject to the constraint that he must be busy when there is work that he can do; we make this notion precise both in the preemptive and nonpreemptive settings. The resulting class of ``perverse'' scheduling problems, which we denote ``Lazy Bureaucrat Problems,'' gives rise to a rich set of new questions that explore the distinction between maximization and minimization in computing optimal schedules.Comment: 19 pages, 2 figures, Latex. To appear, Information and Computatio

    A chemical ionization mass spectrometer for continuous underway shipboard analysis of dimethylsulfide in near-surface seawater

    Get PDF
    A compact, low-cost atmospheric pressure, chemical ionization mass spectrometer ("mini-CIMS") has been developed for continuous underway shipboard measurements of dimethylsulfide (DMS) in seawater. The instrument was used to analyze DMS in air equilibrated with flowing seawater across a porous Teflon membrane equilibrator. The equilibrated gas stream was diluted with air containing an isotopically-labeled internal standard. DMS is ionized at atmospheric pressure via proton transfer from water vapor, then declustered, mass filtered via quadrupole mass spectrometry, and detected with an electron multiplier. The instrument described here is based on a low-cost residual gas analyzer (Stanford Research Systems), which has been modified for use as a chemical ionization mass spectrometer. The mini-CIMS has a gas phase detection limit of 220 ppt DMS for a 1 min averaging time, which is roughly equivalent to a seawater DMS concentration of 0.1 nM DMS at 20°C. The mini-CIMS has the sensitivity, selectivity, and time response required for underway measurements of surface ocean DMS over the full range of oceanographic conditions. The simple, robust design and relatively low cost of the instrument are intended to facilitate use in process studies and surveys, with potential for long-term deployment on research vessels, ships of opportunity, and large buoys

    Improved V II log(gfgf) Values, Hyperfine Structure Constants, and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937

    Get PDF
    New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Use of two spectrometers, independent radiometric calibration methods, and independent data analysis routines enables a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fitting line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log {\epsilon}(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = -2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.Comment: 32 pages, 7 tables (3 machine-readable), 8 figures; accepted for publication in ApJ

    Conformal invariance in two-dimensional turbulence

    Full text link
    Simplicity of fundamental physical laws manifests itself in fundamental symmetries. While systems with an infinity of strongly interacting degrees of freedom (in particle physics and critical phenomena) are hard to describe, they often demonstrate symmetries, in particular scale invariance. In two dimensions (2d) locality often promotes scale invariance to a wider class of conformal transformations which allow for nonuniform re-scaling. Conformal invariance allows a thorough classification of universality classes of critical phenomena in 2d. Is there conformal invariance in 2d turbulence, a paradigmatic example of strongly-interacting non-equilibrium system? Here, using numerical experiment, we show that some features of 2d inverse turbulent cascade display conformal invariance. We observe that the statistics of vorticity clusters is remarkably close to that of critical percolation, one of the simplest universality classes of critical phenomena. These results represent a new step in the unification of 2d physics within the framework of conformal symmetry.Comment: 10 pages, 5 figures, 1 tabl

    Distribution of sizes of erased loops of loop-erased random walks in two and three dimensions

    Get PDF
    We show that in the loop-erased random walk problem, the exponent characterizing probability distribution of areas of erased loops is superuniversal. In d-dimensions, the probability that the erased loop has an area A varies as A^{-2} for large A, independent of d, for 2 <= d <= 4. We estimate the exponents characterizing the distribution of perimeters and areas of erased loops in d = 2 and 3 by large-scale Monte Carlo simulations. Our estimate of the fractal dimension z in two-dimensions is consistent with the known exact value 5/4. In three-dimensions, we get z = 1.6183 +- 0.0004. The exponent for the distribution of durations of avalanche in the three-dimensional abelian sandpile model is determined from this by using scaling relations.Comment: 25 pages, 1 table, 8 figure
    • 

    corecore