143 research outputs found

    Modeling Habitat Attributes of Cavity-Nesting Birds in the Uinta Mountains, Utah: A Hierarchical Approach

    Get PDF
    Birds may have the ability to view their environments at a wide range of spatial scales; accordingly, they may make habitat-selection decisions at multiple spatial scales. I investigated the implications of hierarchy theory and a landscape perspective on nestsite selection in cavity-nesting birds in the Uinta Mountains in northeastern Utah. I used · three different approaches to address the concept of a multi-scaled nest-site selection Ill process. First, I conducted an exploratory study in which I investigated nest-site selection at three spatial scales for Red-naped Sapsucker (Sphyrapicus nuchalis), Northern Flicker (Colaptes auratus), Tree Swallow (Tachycineta bicolor), and Mountain Chickadee (Parus gambeli). By conducting a hierarchically structured analysis, I was able to investigate the habitat relationships that might result from a hierarchically organized nest site selection process . I found that the four species were associated with patterns of vegetation at three spatial scales and that these associations combined in such a way as to imply a process of nest-site selection that may be more complex than that posited by the niche-gestalt concept. Second, I conducted an experiment in which I investigated nest-site selection at two spatial scales. I compared the use of four types of aspen stands in a two-by-two factorial design according to within-stand structure and landscape context. Stands were classified as either dense or sparse and as having predominantly meadow or forested edges. To address nest-site selection by secondary cavity nesters , who may be limited by cavity availability, I augmented the natural cavities with nest boxes. I found that birds predominantly nested in sparse stands and in stands with meadow edges. Although only five nest boxes were used for nesting, all five of these boxes were in sparse stands with meadow edges. The third way in which I investigated the process of nest-site selection was to build and test predictive models using associations between birds and landscape patterns. By using landscape patterns to predict habitat, I was able to build models that were easily applied ; predictions could be made without any additional data collection in the field. The models were very accurate for both Red-naped Sapsuckers and Tree Swallows (86- 98% and 53-93% nests correctly predicted, respectively) but were less accurate for Mountain Chickadees and Northern Flickers (33-42% and 19-37%, respectively)

    The center for creative conservation: fostering novel collaborations for regional sustainability

    Get PDF
    Broad environmental and social forces are affecting our regional ecosystems and impacting the communities who depend on them in diverse ways. Addressing these complex social-ecological challenges necessitates growth in the collective wisdom of society. The Center for Creative Conservation at the University of Washington is addressing this need by promoting innovative solutions to complex environmental problems through fostering collaborations across broadly diverse disciplines, sectors, and communities. We strive to learn and apply best practices of transdisciplinarity, meaning authentically engaging different modes of knowing toward novel and integrated ideas, methods, and applications. For example, we convene medical researchers with ecologists, urban planners, educators, and environmental justice advocates to understand how contact with nature benefits human health, and how we can design green cities, educational programs, and policies that simultaneously support conservation, health, and social equity goals. We support a group of Tribal researchers and community members, climate scientists, science communicators, anthropologists, and artists working to illustrate the consequences of climate change through filming a human-centered story about the effects of sea level rise on a Native village. We also support a group of archaeologists, ethnobotanists, Native elders, and tribal educators who are developing a program to reintroduce the Native land management practices of burning and digging needed to maintain camas prairie ecosystems. In these and other initiatives, we create and support opportunities for researchers, practitioners, and community members to share knowledge, generate cross-cutting solutions, build relationships, and collectively build social-ecological resilience. We are excited to share outcomes and lessons learned from two years of work, and look forward to engaging in new collaborations with our Salish Sea colleagues

    Projected climate-induced faunal change in the western hemisphere

    Get PDF
    Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere–ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today

    Identifying the Opportunity Cost of Critical Habitat Designation under the U.S. Endangered Species Act

    Get PDF
    We determine the effect of the US Endangered Species Act’s Critical Habitat designation on land use change from 1992 to 2011. We find that the rate of change in developed land (constructed material) and agricultural land is not significantly affected by Critical Habitat designation. Therefore, Sections 7 and 9 of the Endangered Species Act do not appear to be more heavily applied in lands designated as Critical Habitat areas versus lands within listed species’ ranges, but without critical habitat designation. Further, there does not appear to be any extraordinary conservation activity in critical habitat areas; for example, environmental non-profits and land trusts do not appear to be concentrating activity in these areas. Before we conclude that the opportunity cost of Critical Habitat designation is negligible we need to examine the land management impacts of designation

    Tools for Assessing Climate Impacts on Fish and Wildlife

    Get PDF
    Climate change is already affecting many fish and wildlife populations. Managing these populations requires an understanding of the nature, magnitude, and distribution of current and future climate impacts. Scientists and managers have at their disposal a wide array of models for projecting climate impacts that can be used to build such an understanding. Here, we provide a broad overview of the types of models available for forecasting the effects of climate change on key processes that affect fish and wildlife habitat (hydrology, fire, and vegetation), as well as on individual species distributions and populations. We present a framework for how climate-impacts modeling can be used to address management concerns, providing examples of model-based assessments of climate impacts on salmon populations in the Pacific Northwest, fire regimes in the boreal region of Canada, prairies and savannas in the Willamette Valley-Puget Sound Trough-Georgia Basin ecoregion, and marten Martes americana populations in the northeastern United States and southeastern Canada. We also highlight some key limitations of these models and discuss how such limitations should be managed. We conclude with a general discussion of how these models can be integrated into fish and wildlife management

    Projecting the Hydrologic Impacts of Climate Change on Montane Wetlands

    Get PDF
    Wetlands are globally important ecosystems that provide critical services for natural communities and human society. Montane wetland ecosystems are expected to be among the most sensitive to changing climate, as their persistence depends on factors directly influenced by climate (e.g. precipitation, snowpack, evaporation). Despite their importance and climate sensitivity, wetlands tend to be understudied due to a lack of tools and data relative to what is available for other ecosystem types. Here, we develop and demonstrate a new method for projecting climate-induced hydrologic changes in montane wetlands. Using observed wetland water levels and soil moisture simulated by the physically based Variable Infiltration Capacity (VIC) hydrologic model, we developed site-specific regression models relating soil moisture to observed wetland water levels to simulate the hydrologic behavior of four types of montane wetlands (ephemeral, intermediate, perennial, permanent wetlands) in the U. S. Pacific Northwest. The hybrid models captured observed wetland dynamics in many cases, though were less robust in others. We then used these models to a) hindcast historical wetland behavior in response to observed climate variability (1916–2010 or later) and classify wetland types, and b) project the impacts of climate change on montane wetlands using global climate model scenarios for the 2040s and 2080s (A1B emissions scenario). These future projections show that climate-induced changes to key driving variables (reduced snowpack, higher evapotranspiration, extended summer drought) will result in earlier and faster drawdown in Pacific Northwest montane wetlands, leading to systematic reductions in water levels, shortened wetland hydroperiods, and increased probability of drying. Intermediate hydroperiod wetlands are projected to experience the greatest changes. For the 2080s scenario, widespread conversion of intermediate wetlands to fast-drying ephemeral wetlands will likely reduce wetland habitat availability for many species

    Applied Climate-Change Analysis: The Climate Wizard Tool

    Get PDF
    Background: Although the message of ‘‘global climate change’’ is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard (http://ClimateWizard.org) that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world. Methodology/Principal Findings: To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies) in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951–2002 occurred in northern hemisphere countries (especially during January–April), but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50uN during February-March to 10uN during August-September. Precipitation decreases occurred most commonly in countries between 0–20uN, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs) for 2070–2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change. Conclusions/Significance: The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally and temporally-specific analyses of climate change. Moreover, Climate Wizard is not a static product, but rather a data analysis framework designed to be used for climate change impact and adaption planning, which can be expanded to include other information, such as downscaled future projections of hydrology, soil moisture, wildfire, vegetation, marine conditions, disease, and agricultural productivity

    Applied Climate-Change Analysis: The Climate Wizard Tool

    Get PDF
    Although the message of "global climate change" is catalyzing international action, it is local and regional changes that directly affect people and ecosystems and are of immediate concern to scientists, managers, and policy makers. A major barrier preventing informed climate-change adaptation planning is the difficulty accessing, analyzing, and interpreting climate-change information. To address this problem, we developed a powerful, yet easy to use, web-based tool called Climate Wizard (http://ClimateWizard.org) that provides non-climate specialists with simple analyses and innovative graphical depictions for conveying how climate has and is projected to change within specific geographic areas throughout the world.To demonstrate the Climate Wizard, we explored historic trends and future departures (anomalies) in temperature and precipitation globally, and within specific latitudinal zones and countries. We found the greatest temperature increases during 1951-2002 occurred in northern hemisphere countries (especially during January-April), but the latitude of greatest temperature change varied throughout the year, sinusoidally ranging from approximately 50 degrees N during February-March to 10 degrees N during August-September. Precipitation decreases occurred most commonly in countries between 0-20 degrees N, and increases mostly occurred outside of this latitudinal region. Similarly, a quantile ensemble analysis based on projections from 16 General Circulation Models (GCMs) for 2070-2099 identified the median projected change within countries, which showed both latitudinal and regional patterns in projected temperature and precipitation change.The results of these analyses are consistent with those reported by the Intergovernmental Panel on Climate Change, but at the same time, they provide examples of how Climate Wizard can be used to explore regionally- and temporally-specific analyses of climate change. Moreover, Climate Wizard is not a static product, but rather a data analysis framework designed to be used for climate change impact and adaption planning, which can be expanded to include other information, such as downscaled future projections of hydrology, soil moisture, wildfire, vegetation, marine conditions, disease, and agricultural productivity

    Need for Aeromedical Evacuation High-Level Containment Transport Guidelines

    Get PDF
    Circumstances exist that call for the aeromedical evacuation high-level containment transport (AE-HLCT) of patients with highly hazardous communicable diseases. A small number of organizations maintain AE-HLCT capabilities, and little is publicly available regarding the practices. The time is ripe for the development of standards and consensus guidelines involving AE-HLCT
    • …
    corecore