200 research outputs found
the SDSS-III APOGEE Spectral Line List for H-Band Spectroscopy
We present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists contains 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.Alfred P. Sloan FoundationNational Science FoundationU.S. Department of Energy Office of ScienceJanos Bolyai Research Scholarship of the Hungarian Academy of SciencesSpanish Ministry of Economy and Competitiveness AYA-2011-27754, AYA-2014-58082-PRSF 14-50-00043McDonald Observator
Need for Aeromedical Evacuation High-Level Containment Transport Guidelines
Circumstances exist that call for the aeromedical evacuation high-level containment transport (AE-HLCT) of patients with highly hazardous communicable diseases. A small number of organizations maintain AE-HLCT capabilities, and little is publicly available regarding the practices. The time is ripe for the development of standards and consensus guidelines involving AE-HLCT
The chemical composition of nearby young associations: s-process element abundances in AB Doradus, Carina-Near, and Ursa Major
Recently, several studies have shown that young, open clusters are
characterised by a considerable over-abundance in their barium content. In
particular, D'Orazi et al. (2009) reported that in some younger clusters
[Ba/Fe] can reach values as high as ~0.6 dex. The work also identified the
presence of an anti-correlation between [Ba/Fe] and cluster age. For clusters
in the age range ~4.5 Gyr-500 Myr, this is best explained by assuming a higher
contribution from low-mass asymptotic giant branch stars to the Galactic
chemical enrichment. The purpose of this work is to investigate the ubiquity of
the barium over-abundance in young stellar clusters. We analysed
high-resolution spectroscopic data, focusing on the s-process elemental
abundance for three nearby young associations, i.e. AB Doradus, Carina-Near,
and Ursa Major. The clusters have been chosen such that their age spread would
complement the D'Orazi et al. (2009) study. We find that while the s-process
elements Y, Zr, La, and Ce exhibit solar ratios in all three associations, Ba
is over-abundant by ~0.2 dex. Current theoretical models can not reproduce this
abundance pattern, thus we investigate whether this unusually large Ba content
might be related to chromospheric effects. Although no correlation between
[Ba/Fe] and several activity indicators seems to be present, we conclude that
different effects could be at work which may (directly or indirectly) be
related to the presence of hot stellar chromospheres.Comment: Accepted for publication in MNRA
Characteristics of SARS-CoV-2 Transmission among Meat Processing Workers in Nebraska, USA, and Effectiveness of Risk Mitigation Measures
The coronavirus disease (COVID-19) pandemic has severely impacted the meat processing industry in the United States. We sought to detail demographics and outcomes of severe acute respiratory syndrome coronavirus 2 infections among workers in Nebraska meat processing facilities and determine the effects of initiating universal mask policies and installing physical barriers at 13 meat processing facilities. During April 1-July 31, 2020, COVID-19 was diagnosed in 5,002 Nebraska meat processing workers (attack rate 19%). After initiating both universal masking and physical barrier interventions, 8/13 facilities showed a statistically significant reduction in COVID-19 incidence inspecifically, high attack rates among meat processing industry workers, disproportionately high risk of adverse outcomes among ethnic and racial minority groups and men, and effectiveness of using multiple prevention and control interventions to reduce disease transmission
Hubble Space Telescope Near-Ultraviolet Spectroscopy of Bright CEMP-s Stars
We present an elemental-abundance analysis, in the near-ultraviolet (NUV)
spectral range, for the bright carbon-enhanced metal-poor (CEMP) stars HD196944
(V = 8.40, [Fe/H] = -2.41) and HD201626 (V = 8.16, [Fe/H] = -1.51), based on
data acquired with the Space Telescope Imaging Spectrograph (STIS) on the
Hubble Space Telescope. Both of these stars belong to the sub-class CEMP-s, and
exhibit clear over-abundances of heavy elements associated with production by
the slow neutron-capture process. HD196944 has been well-studied in the optical
region, but we are able to add abundance results for six species (Ge, Nb, Mo,
Lu, Pt, and Au) that are only accessible in the NUV. In addition, we provide
the first determination of its orbital period, P=1325 days. HD201626 has only a
limited number of abundance results based on previous optical work -- here we
add five new species from the NUV, including Pb. We compare these results with
models of binary-system evolution and s-process element production in stars on
the asymptotic giant branch, aiming to explain their origin and evolution. Our
best-fitting models for HD 196944 (M1,i = 0.9Mo, M2,i = 0.86Mo, for
[Fe/H]=-2.2), and HD 201626 (M1,i = 0.9Mo , M2,i = 0.76Mo , for [Fe/H]=-2.2;
M1,i = 1.6Mo , M2,i = 0.59Mo, for [Fe/H]=-1.5) are consistent with the current
accepted scenario for the formation of CEMP-s stars.Comment: 25 pages, 13 figures; accepted for publication in Ap
Access, Socioeconomic Environment, and Death from COVID-19 in Nebraska
Our study assesses whether factors related to healthcare access in the first year of the pandemic affect mortality and length of stay (LOS). Our cohort study examined hospitalized patients at Nebraska Medicine between April and October 2020 who were tested for SARS-CoV-2 and had a charted sepsis related diagnostic code. Multivariate logistic was used to analyze the odds of mortality and linear regression was used to calculate the parameter estimates of LOS associated with COVID-19 status, age, gender, race/ethnicity, median household income, admission month, and residential distance from definitive care. Among 475 admissions, the odds of mortality is greater among those with older age (OR: 1.04, 95% CI: 1.02-1.07) and residence in an area with low median household income (OR: 2.11, 95% CI: 0.52-8.57), however, the relationship between mortality and wealth was not statistically significant. Those with non-COVID-19 sepsis had longer LOS (Parameter Estimate: -5.11, adjusted 95% CI: -7.92 to -2.30). Distance from definitive care had trends toward worse outcomes (Parameter Estimate: 0.164, adjusted 95% CI: -1.39 to 1.97). Physical and social aspects of access to care are linked to poorer COVID-19 outcomes. Non-COVID-19 healthcare outcomes may be negatively impacted in the pandemic. Strategies to advance patient-centered outcomes in vulnerable populations should account for varied aspects (socioeconomic, residential setting, rural populations, racial, and ethnic factors). Indirect impacts of the pandemic on non-COVID-19 health outcomes require further study
Long-Term Assessment of the Effects of COVID-19 and Isolation Care on Survivor Disability and Anxiety
We conducted an assessment of disability, anxiety, and other life impacts of COVID-19 and isolation care in a unique cohort of individuals. These included both community admissions to a university hospital as well as some of the earliest international aeromedical evacuees. Among an initial 16 COVID-19 survivors that were interviewed 6-12 months following their admission into isolation care, perception of their isolation care experience was related to their reporting of long-term consequences. However, anxiety and disability assessed with standard scores had no relationship with each other. Both capture of the isolation care experience and caution relying on single scoring systems for assessing long-term consequences in survivors are important considerations for on-going and future COVID-19 and other pandemic survivor research
The Chemical Composition and Age of the Metal-Poor Halo Star BD +17^\circ 3248
We have combined new high-resolution spectra obtained with the Hubble Space
Telescope (HST) and ground-based facilities to make a comprehensive new
abundance analysis of the metal-poor, halo star BD +17^\circ 3248. We have
detected the third r-process peak elements osmium, platinum, and (for the first
time in a metal-poor star) gold, elements whose abundances can only be reliably
determined using HST. Our observations illustrate a pattern seen in other
similar halo stars with the abundances of the heavier neutron-capture elements,
including the third r-process peak elements, consistent with a scaled solar
system r-process distribution. The abundances of the lighter neutron-capture
elements, including germanium and silver, fall below that same scaled solar
r-process curve, a result similar to that seen in the ultra-metal-poor star CS
22892--052. A single site with two regimes or sets of conditions, or perhaps
two different sites for the lighter and heavier neutron-capture elements, might
explain the abundance pattern seen in this star. In addition we have derived a
reliable abundance for the radioactive element thorium. We tentatively identify
U II at 3859 A in the spectrum of BD +17^\circ 3248, which makes this the
second detection of uranium in a very metal-poor halo star. Our combined
observations cover the widest range in proton number (from germanium to
uranium) thus far of neutron-capture elements in metal-poor Galactic halo
stars. Employing the thorium and uranium abundances in comparison with each
other and with several stable elements, we determine an average
cosmochronological age for BD +17^\circ 3248 of 13.8 +/- 4 Gyr, consistent with
that found for other similar metal-poor halo stars.Comment: 58 pages, 4 tables, 11 figures; To appear in ApJ Typo correcte
The Size and Culturability of Patient-Generated SARS-CoV-2 Aerosol
BACKGROUND: Aerosol transmission of COVID-19 is the subject of ongoing policy debate. Characterizing aerosol produced by people with COVID-19 is critical to understanding the role of aerosols in transmission.
OBJECTIVE: We investigated the presence of virus in size-fractioned aerosols from six COVID-19 patients admitted into mixed acuity wards in April of 2020.
METHODS: Size-fractionated aerosol samples and aerosol size distributions were collected from COVID-19 positive patients. Aerosol samples were analyzed for viral RNA, positive samples were cultured in Vero E6 cells. Serial RT-PCR of cells indicated samples where viral replication was likely occurring. Viral presence was also investigated by western blot and transmission electron microscopy (TEM).
RESULTS: SARS-CoV-2 RNA was detected by rRT-PCR in all samples. Three samples confidently indicated the presence of viral replication, all of which were from collected sub-micron aerosol. Western blot indicated the presence of viral proteins in all but one of these samples, and intact virions were observed by TEM in one sample.
SIGNIFICANCE: Observations of viral replication in the culture of submicron aerosol samples provides additional evidence that airborne transmission of COVID-19 is possible. These results support the use of efficient respiratory protection in both healthcare and by the public to limit transmission
Need for Aeromedical Evacuation High-Level Containment Transport Guidelines
Circumstances exist that call for the aeromedical evacuation high-level containment transport (AE-HLCT) of patients with highly hazardous communicable diseases. A small number of organizations maintain AE-HLCT capabilities, and little is publicly available regarding the practices. The time is ripe for the development of standards and consensus guidelines involving AE-HLCT
- âŠ