282 research outputs found

    Unified Analysis of Switched-Capacitor Resonant Converters

    Full text link

    Dynamic depletion in a Bose condensate via a sudden increase of the scattering length

    Full text link
    We examine the time-dependent quantum depletion of a trapped Bose condensate arising from a rapid increase of the scattering length. Our solution indicates that a significant buildup of incoherent atoms can occur within a characteristic time short compared with the harmonic trap period. We discuss how the depletion density and the characteristic time depend on the physical parameters of the condensate

    Precise measurements of radio-frequency magnetic susceptibility in (anti)ferromagnetic materials

    Full text link
    Dynamic magnetic susceptibility, χ\chi, was studied in several intermetallic materials exhibiting ferromagnetic, antiferromagnetic and metamagnetic transitions. Precise measurements by using a 14 MHz tunnel diode oscillator (TDO) allow detailed insight into the field and temperature dependence of χ\chi. In particular, local moment ferromagnets show a sharp peak in χ(T)\chi(T) near the Curie temperature, TcT_c. The peak amplitude decreases and shifts to higher temperatures with very small applied dc fields. Anisotropic measurements of CeVSb3_3 show that this peak is present provided the magnetic easy axis is aligned with the excitation field. In a striking contrast, small moment, itinerant ferromagnets (i.e., ZrZn2_2) show a broad maximum in χ(T)\chi(T) that responds differently to applied field. We believe that TDO measurements provide a very sensitive way to distinguish between local and itinerant moment magnetic orders. Local moment antiferromagnets do not show a peak at the N\'eel temperature, TNT_N, but only a sharp decrease of χ\chi below TNT_N due to the loss of spin-disorder scattering changing the penetration depth of the ac excitation field. Furthermore, we show that the TDO is capable of detecting changes in spin order as well as metamagnetic transitions. Finally, critical scaling of χ(T,H)\chi(T,H) in the vicinity of TCT_C is discussed in CeVSb3_3 and CeAgSb2_2

    (un)Doing standards in education with actor-network theory

    Get PDF
    Recent critiques have drawn important attention to the depoliticized consensus and empty promises embedded in network discourses of educational policy. While acceding this critique, this discussion argues that some forms of network analysis – specifically those adopting actor-network theory (ANT) approaches - actually offer useful theoretical resources for policy studies. Drawing from ANT-inspired studies of policy processes associated with educational standards, the article shows the ambivalences and contradictions as well as the possibilities that can be illuminated by ANT analysis of standards as networks. The discussion outlines the diverse network conceptions, considerations and sensibilities afforded by ANT approaches. Then it shows four phenomena that have been highlighted by ANT studies of educational standards: ordering (and rupturing) practice through ‘immutable mobiles’, local universality, tensions among networks of prescription and networks of negotiation, and different co-existing ontological forms of the same standards. The conclusion suggests starting points, drawing from these ANT-inspired network analyses, for examining policy processes associated with educational standards

    Quantum coherent control of highly multipartite continuous-variable entangled states by tailoring parametric interactions

    Full text link
    The generation of continuous-variable multipartite entangled states is important for several protocols of quantum information processing and communication, such as one-way quantum computation or controlled dense coding. In this article we theoretically show that multimode optical parametric oscillators can produce a great variety of such states by an appropriate control of the parametric interaction, what we accomplish by tailoring either the spatio-temporal shape of the pump, or the geometry of the nonlinear medium. Specific examples involving currently available optical parametric oscillators are given, hence showing that our ideas are within reach of present technology.Comment: 14 pages, 5 figure

    Entangling Two Bose-Einstein Condensates by Stimulated Bragg Scattering

    Get PDF
    We propose an experiment for entangling two spatially separated Bose-Einstein condensates by Bragg scattering of light. When Bragg scattering in two condensates is stimulated by a common probe, the resulting quasiparticles in the two condensates get entangled due to quantum communication between the condensates via probe beam. The entanglement is shown to be significant and occurs in both number and quadrature phase variables. We present two methods of detecting the generated entanglement.Comment: 4 pages, Revte

    FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis

    Get PDF
    Endocytosis mediates the cellular uptake of micronutrients and the turnover of plasma membrane proteins. Clathrin-mediated endocytosis is the major uptake pathway in resting cells, but several clathrin-independent endocytic routes exist in parallel. One such pathway, fast endophilin-mediated endocytosis (FEME), is not constitutive but triggered upon activation of certain receptors, including the β adrenergic receptor. FEME activates promptly following stimulation as endophilin is pre-enriched by the phosphatidylinositol-3,4-bisphosphate-binding protein lamellipodin. However, in the absence of stimulation, endophilin foci abort and disassemble after a few seconds. Looking for additional proteins involved in FEME, we found that 20 out of 65 BAR domain-containing proteins tested colocalized with endophilin spots. Among them, FBP17 and CIP4 prime the membrane of resting cells for FEME by recruiting the 5'-lipid phosphatase SHIP2 and lamellipodin to mediate the local production of phosphatidylinositol-3,4-bisphosphate and endophilin pre-enrichment. Membrane-bound GTP-loaded Cdc42 recruits FBP17 and CIP4, before being locally deactivated by RICH1 and SH3BP1 GTPase-activating proteins. This generates the transient assembly and disassembly of endophilin spots, which lasts 5-10 seconds. This mechanism periodically primes patches of the membrane for prompt responses upon FEME activation
    corecore