20,020 research outputs found

    A High Contrast Imaging Survey of SIM Lite Planet Search Targets

    Get PDF
    With the development of extreme high contrast ground-based adaptive optics instruments and space missions aimed at detecting and characterizing Jupiter- and terrestrial-mass planets, it is critical that each target star be thoroughly vetted to determine whether it is a viable target given both the instrumental design and scientific goals of the program. With this in mind, we have conducted a high contrast imaging survey of mature AFGKM stars with the PALAO/PHARO instrument on the Palomar 200 inch telescope. The survey reached sensitivities sufficient to detect brown dwarf companions at separations of > 50 AU. The results of this survey will be utilized both by future direct imaging projects such as GPI, SPHERE and P1640 and indirect detection missions such as SIM Lite. Out of 84 targets, all but one have no close-in (0.45-1") companions and 64 (76%) have no stars at all within the 25" field-of-view. The sensitivity contrasts in the Ks passband ranged from 4.5 to 10 for this set of observations. These stars were selected as the best nearby targets for habitable planet searches owing to their long-lived habitable zones (> 1 billion years). We report two stars, GJ 454 and GJ 1020, with previously unpublished proper motion companions. In both cases, the companions are stellar in nature and are most likely M dwarfs based on their absolute magnitudes and colors. Based on our mass sensitivities and level of completeness, we can place an upper limit of ~17% on the presence of brown dwarf companions with masses >40 MJ at separations of 1 arcsecond. We also discuss the importance of including statistics on those stars with no detected companions in their field of view for the sake of future companion searches and an overall understanding of the population of low-mass objects around nearby stars.Comment: Accepted to PASP, Figure 7 available upon reques

    Cheating and the evolutionary stability of mutualisms

    Get PDF
    Interspecific mutualisms have been playing a central role in the functioning of all ecosystems since the early history of life. Yet the theory of coevolution of mutualists is virtually nonexistent, by contrast with well-developed coevolutionary theories of competition, predator–prey and host–parasite interactions. This has prevented resolution of a basic puzzle posed by mutualisms: their persistence in spite of apparent evolutionary instability. The selective advantage of 'cheating', that is, reaping mutualistic benefits while providing fewer commodities to the partner species, is commonly believed to erode a mutualistic interaction, leading to its dissolution or reciprocal extinction. However, recent empirical findings indicate that stable associations of mutualists and cheaters have existed over long evolutionary periods. Here, we show that asymmetrical competition within species for the commodities offered by mutualistic partners provides a simple and testable ecological mechanism that can account for the long-term persistence of mutualisms. Cheating, in effect, establishes a background against which better mutualists can display any competitive superiority. This can lead to the coexistence and divergence of mutualist and cheater phenotypes, as well as to the coexistence of ecologically similar, but unrelated mutualists and cheaters

    Ferroelectricity from spin supercurrents in LiCuVO4

    Full text link
    We have studied the magnetic structure of the ferroelectric frustrated spin-1/2 chain material LiCuVO4 in applied electric and magnetic fields using polarized neutrons. A symmetry and mean-field analysis of the data rules out the presence of static Dzyaloshinskii-Moriya interaction, while exchange striction is shown to be negligible by our specific-heat measurements. The experimentally observed magnetoelectric coupling is in excellent agreement with the predictions of a purely electronic mechanism based on spin supercurrents.Comment: 4 pages, 3 figures, final versio

    Replacement of PBNA in HB and HC polymers used in SRM propellant and liner

    Get PDF
    The antioxidant phenyl-beta-naphthylamine (PBNA) was used in both HB and HC polymers. The sole (domestic) supplier of PBNA has withdrawn this product from the market, primarily because of suspected health hazards. Commercially available substitute(s) were selected and qualified for use in the two polymers

    Loss of purity by wave packet scattering at low energies

    Full text link
    We study the quantum entanglement produced by a head-on collision between two gaussian wave packets in three-dimensional space. By deriving the two-particle wave function modified by s-wave scattering amplitudes, we obtain an approximate analytic expression of the purity of an individual particle. The loss of purity provides an indicator of the degree of entanglement. In the case the wave packets are narrow in momentum space, we show that the loss of purity is solely controlled by the ratio of the scattering cross section to the transverse area of the wave packets.Comment: 7 pages, 1 figur

    The inner structure and kinematics of the Sagittarius dwarf galaxy as a product of tidal stirring

    Full text link
    The tidal stirring model envisions the formation of dwarf spheroidal (dSph) galaxies in the Local Group via the tidal interaction of disky dwarf systems with a larger host galaxy like the Milky Way. These progenitor disks are embedded in extended dark halos and during the evolution both components suffer strong mass loss. In addition, the disks undergo the morphological transformation into spheroids and the transition from ordered to random motion of their stars. Using collisionless N-body simulations we construct a model for the nearby and highly elongated Sagittarius (Sgr) dSph galaxy within the framework of the tidal stirring scenario. Constrained by the present known orbit of the dwarf, the model suggests that in order to produce the majority of tidal debris observed as the Sgr stream, but not yet transform the core of the dwarf into a spherical shape, Sgr must have just passed the second pericenter of its current orbit around the Milky Way. In the model, the stellar component of Sgr is still very elongated after the second pericenter and morphologically intermediate between the strong bar formed at the first pericenter and the almost spherical shape existing after the third pericenter. This is thus the first model of the evolution of the Sgr dwarf that accounts for its observed very elliptical shape. At the present time there is very little intrinsic rotation left and the velocity gradient detected along the major axis is almost entirely of tidal origin. We model the recently measured velocity dispersion profile for Sgr assuming that mass traces light and estimate its current total mass within 5 kpc to be 5.2 x 10^8 M_sun. To have this mass at present, the model requires that the initial virial mass of Sgr must have been as high as 1.6 x 10^10 M_sun, comparable to that of the Large Magellanic Cloud, which may serve as a suitable analog for the pre-interaction, Sgr progenitor.Comment: 14 pages, 14 figures, minor changes to match the version published in Ap

    S-wave quantum entanglement in a harmonic trap

    Full text link
    We analyze the quantum entanglement between two interacting atoms trapped in a spherical harmonic potential. At ultra-cold temperature, ground state entanglement is generated by the dominated s-wave interaction. Based on a regularized pseudo-potential Hamiltonian, we examine the quantum entanglement by performing the Schmidt decomposition of low-energy eigenfunctions. We indicate how the atoms are paired and quantify the entanglement as a function of a modified s-wave scattering length inside the trap.Comment: 10 pages, 5 figures, to be apear in PR
    • 

    corecore