456 research outputs found
Quantum Computing with Atomic Josephson Junction Arrays
We present a quantum computing scheme with atomic Josephson junction arrays.
The system consists of a small number of atoms with three internal states and
trapped in a far-off resonant optical lattice. Raman lasers provide the
"Josephson" tunneling, and the collision interaction between atoms represent
the "capacitive" couplings between the modes. The qubit states are collective
states of the atoms with opposite persistent currents. This system is closely
analogous to the superconducting flux qubit. Single qubit quantum logic gates
are performed by modulating the Raman couplings, while two-qubit gates result
from a tunnel coupling between neighboring wells. Readout is achieved by tuning
the Raman coupling adiabatically between the Josephson regime to the Rabi
regime, followed by a detection of atoms in internal electronic states.
Decoherence mechanisms are studied in detail promising a high ratio between the
decoherence time and the gate operation time.Comment: 7 figure
Dynamic depletion in a Bose condensate via a sudden increase of the scattering length
We examine the time-dependent quantum depletion of a trapped Bose condensate
arising from a rapid increase of the scattering length. Our solution indicates
that a significant buildup of incoherent atoms can occur within a
characteristic time short compared with the harmonic trap period. We discuss
how the depletion density and the characteristic time depend on the physical
parameters of the condensate
Representation of climate extreme indices in the ACCESS1.3b coupled atmosphere–land surface model
Climate extremes, such as heat waves and heavy precipitation events, have large impacts on ecosystems and societies. Climate models provide useful tools for studying underlying processes and amplifying effects associated with extremes. The Australian Community Climate and Earth System Simulator (ACCESS) has recently been coupled to the Community Atmosphere Biosphere Land Exchange (CABLE) model. We examine how this model represents climate extremes derived by the Expert Team on Climate Change Detection and Indices (ETCCDI) and compare them to observational data sets using the AMIP framework. We find that the patterns of extreme indices are generally well represented. Indices based on percentiles are particularly well represented and capture the trends over the last 60 years shown by the observations remarkably well. The diurnal temperature range is underestimated, minimum temperatures (TMIN) during nights are generally too warm and daily maximum temperatures (TMAX) too low in the model. The number of consecutive wet days is overestimated, while consecutive dry days are underestimated. The maximum consecutive 1-day precipitation amount is underestimated on the global scale. Biases in TMIN correlate well with biases in incoming longwave radiation, suggesting a relationship with biases in cloud cover. Biases in TMAX depend on biases in net shortwave radiation as well as evapotranspiration. The regions and season where the bias in evapotranspiration plays a role for the TMAX bias correspond to regions and seasons where soil moisture availability is limited. Our analysis provides the foundation for future experiments that will examine how land-surface processes contribute to these systematic biases in the ACCESS modelling system
Dynamic splitting of a Bose-Einstein Condensate
We study the dynamic process of splitting a condensate by raising a potential
barrier in the center of a harmonic trap. We use a two-mode model to describe
the phase coherence between the two halves of the condensate. Furthermore, we
explicitly consider the spatial dependence of the mode funtions, which varies
depending on the potential barrier. This allows to get the tunneling coupling
between the two wells and the on-site energy as a function of the barrier
height. Moreover we can get some insight on the collective modes which are
excited by raising the barrier. We describe the internal and external degrees
of freedom by variational ansatz. We distinguish the possible regimes as a
function of the characteristic parameters of the problem and identify the
adiabaticity conditions.Comment: 17 pages, 8 figure
Collective dynamics of internal states in a Bose gas
Theory for the Rabi and internal Josephson effects in an interacting Bose gas
in the cold collision regime is presented. By using microscopic transport
equation for the density matrix the problem is mapped onto a problem of
precession of two coupled classical spins. In the absence of an external
excitation field our results agree with the theory for the density induced
frequency shifts in atomic clocks. In the presence of the external field, the
internal Josephson effect takes place in a condensed Bose gas as well as in a
non-condensed gas. The crossover from Rabi oscillations to the Josephson
oscillations as a function of interaction strength is studied in detail.Comment: 18 pages, 2 figure
Dynamically turning off interactions in a two component condensate
We propose a mechanism to change the interaction strengths of a two component
condensate. It is shown that the application of pi/2 pulses allows to alter the
effective interspecies interaction strength as well as the effective
interaction strength between particles of the same kind. This mechanism
provides a simple method to transform spatially stable condensates into
unstable once and vice versa. It also provides a means to store a squeezed spin
state by turning off the interaction for the internal states and thus allows to
gain control over many body entangled states.Comment: 7 pages 5 figures, symbols changed, minor changes, to appear in Phys.
Rev.
Mid-crustal deformation of the Annapurna-Dhaulagiri Himalaya, central Nepal: An atypical example of channel flow during the Himalayan orogeny
The channel-flow model for the Greater Himalayan Sequence (GHS) of the Himalayan orogen involves a partially molten, rheologically weak, mid-crustal layer “flowing” southward relative to the upper and lower crust during late Oligocene–Miocene. Flow was driven by topographic overburden, underthrusting, and focused erosion. We present new structural and thermobarometric analyses from the GHS in the Annapurna-Dhaulagiri HimaÂlaya, central Nepal; these data suggest that during exhumation, the GHS cooled, strengthened, and transformed from a weak “active channel” to a strong “channel plug” at greater depths than elsewhere in the Himalaya. After strengthening, continued convergence resulted in localized top-southwest (top-SW) shortening on the South Tibetan detachment system (STDS). The GHS in the Annapurna-Dhaulagiri Himalaya displays several geological features that distinguish it from other Himalayan regions. These include reduced volumes of leucogranite and migmatite, no evidence for partial melting within the sillimanite stability field, reduced structural thickness, and late-stage top-southwest shortening in the STDS. New and previously published structural and thermobarometric constraints suggest that the channel-flow model can be applied to mid-Eocene–early Miocene mid-crustal evolution of the GHS in the Annapurna-Dhaulagiri Himalaya. However, pressure-temperature-time (PTt) constraints indicate that following peak conditions, the GHS in this region did not undergo rapid isothermal exhumation and widespread sillimaÂnite-grade decompression melting, as commonly recorded elsewhere in the HimaÂlaya. Instead, lower-than-typical structural thickness and melt volumes suggest that the upper part of the GHS (Upper Greater Himalayan Sequence [UGHS]—the proposed channel) had a greater viscosity than in other HimaÂlayan regions. We suggest that viscosity-limited, subdued channel flow prevented exhumation on an isothermal trajectory and forced the UGHS to exhume slowly. These findings are distinct from other regions in the Himalaya. As such, we describe the mid-crustal evolution of the GHS in the Annapurna-ÂDhaulagiri Himalaya as an atypical example of channel flow during the Himalayan orogeny
Many particle entanglement in two-component Bose-Einstein Condensates
We investigate schemes to dynamically create many particle entangled states
of a two component Bose-Einstein condensate in a very short time proportional
to 1/N where is the number of condensate particles. For small we
compare exact numerical calculations with analytical semiclassical estimates
and find very good agreement for . We also estimate the effect of
decoherence on our scheme, study possible scenarios for measuring the entangled
states, and investigate experimental imperfections.Comment: 12 pages, 8 figure
- …