9 research outputs found

    Effect of different good solvents in flash nano-precipitation via multi-scale population balance modeling-CFD coupling approach

    Get PDF
    A computational and modeling approach is used to highlight the key factors that affect polymer nanoparticles (NP) formation in flash nano-precipitation (FNP), when the good solvent, e.g., acetone, is replaced by acetonitrile, tetrahydrofuran and tert-butanol. A population balance model is coupled with computational fluid dynamics to study the kinetics effects on FNP. The mean NP size is predicted in terms of mean radius of gyration via the Flory law of real polymers. The effect of different good solvents is modeled in terms of solute–solvent interactions, using the Flory–Huggins theory and Hansen solubility parameters. Promising results show how the proposed methodology is able to investigate the role played by different good solvents, analyzing single factors at the time. A deep insight into both the dynamics of mixing and the dynamics of aggregation is therefore reached and the main mechanisms involved are pointed out, showing a good agreement with experimental data

    Extended Charge-on-Particle Optimized Potentials for Liquid Simulation Acetone Model: The Case of Acetone-Water Mixtures

    No full text
    It is well-known that classical molecular dynamics simulations of acetone–water mixtures lead to a strong phase separation when using most of the standard all-atom force fields, despite the well-known experimental fact that acetone is miscible with water in any proportion at room temperature. We describe here the use of a charge-on-particle model for accounting for the induced polarization effect in acetone–water mixtures which can solve the demixing problem at all acetone molar fractions. The polarizability effect is introduced by means of a virtual site (VS) on the carbonyl group of the acetone molecule, which increases its dipole moment and leads to a better affinity with water molecules. The VS parameter is set by fitting the density of the mixture at different acetone molar fractions. The main novelty of the VS approach lies on the transferability and universality of the model because the polarizability can be controlled without modifying the force field adopted, like previous efforts did. The results are satisfactory also in terms of the transport properties, that is, diffusivity and viscosity coefficients of the mixture

    A novel multiscale model for the simulation of polymer flash nano-precipitation

    No full text
    Numerous models describe the flash nano-precipitation (FNP) process to form polymer nanoparticles, however most of them are based on equilibrium approaches and are not capable of predicting kinetically stable configurations. Moreover, since FNP occurs through solvent-displacement, the way in which the solvent and anti-solvent are mixed plays an important role, which is often overlooked. Here we propose a multiscale approach, which combines molecular dynamics (MD), a Smoluchowski population balance equation (PBE) and computational fluid dynamics (CFD), to model the FNP process, from the atomistic-scale up to the macro-scale. The particle formation process is not described with the usual nucleation-and-growth approach, but as Brownian aggregation of the polymer molecules into nanoparticles. Being the final nanoparticles amorphous, no energy barrier to the aggregation process is considered, whereas the effects of both turbulent mixing and turbulent aggregation on the evolution of the nanoparticles are accounted for. The main novelty of this work is that the aggregation kernel appearing in the PBE, coupled in turn with CFD, is calculated from MD simulations, following the multiscale modeling paradigm. The model is tested on the FNP of poly-ε-caprolactone nanoparticles in acetone-water mixtures. Predictions for the final mean nanoparticle size are found in good agreement with experiments, especially at high initial polymer concentrations, where the hypothesis of no energy barrier is more realistic

    Soft matter self-assembly in acetone-water mixtures: a multiscale modeling approach

    No full text
    This work focuses on macromolecule (poly-ε-caprolactone, PCL) self-assembly in acetone/water mixtures by a novel multiscale approach which combines molecular dynamics (MD), a Smoluchowski population balance model (PBM) and computational fluid dynamics (CFD), to model the self-assembly process from the atomistic to the macro-scale

    Extended Charge-On-Particle Optimized Potentials for Liquid Simulation Acetone Model: The Case of Acetone–Water Mixtures

    No full text
    It is well-known that classical molecular dynamics simulations of acetone–water mixtures lead to a strong phase separation when using most of the standard all-atom force fields, despite the well-known experimental fact that acetone is miscible with water in any proportion at room temperature. We describe here the use of a charge-on-particle model for accounting for the induced polarization effect in acetone–water mixtures which can solve the demixing problem at all acetone molar fractions. The polarizability effect is introduced by means of a virtual site (VS) on the carbonyl group of the acetone molecule, which increases its dipole moment and leads to a better affinity with water molecules. The VS parameter is set by fitting the density of the mixture at different acetone molar fractions. The main novelty of the VS approach lies on the transferability and universality of the model because the polarizability can be controlled without modifying the force field adopted, like previous efforts did. The results are satisfactory also in terms of the transport properties, that is, diffusivity and viscosity coefficients of the mixture
    corecore