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Effect of Different Good Solvents in Flash

Nano-Precipitation via Multi-scale Population Balance

Modeling-CFD coupling approach

Alessio D. Lavino1, Marco Ferrari∗, Antonello A. Barresi, Daniele Marchisio

Department of Applied Science and Technology, Institute of Chemical Engineering,
Politecnico di Torino, 10129 Torino, Italy

Abstract

A computational and modeling approach is used to highlight the key factors

that affect the polymer nanoparticles (NP) size in flash nano-precipitation

(FNP), when the good solvent, e.g., acetone, is replaced by acetonitrile,

tetrahydrofuran and tert-butanol. A population balance model is coupled

with computational fluid dynamics to study the kinetics effects on FNP. The

mean NP size is predicted in terms of mean radius of gyration via the Flory

law of real polymers. The effect of different good solvents is modeled in terms

of solute-solvent interactions, using the Flory-Huggins theory and Hansen sol-

ubility parameters. Promising results show how the proposed methodology is
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able to investigate the role played by different good solvents, analyzing single

factors at the time. A deep insight into both the dynamics of mixing and

the dynamics of aggregation is therefore reached and the main mechanisms

involved are pointed out, showing a good agreement with experimental data.

Keywords: Flash Nano-Precipitation, Hansen Solubility Parameters,

Flory-Huggins Theory, Population Balance Model, CFD

1. Introduction1

Nanoparticles (NP) production has been widely investigated in the last2

decade, due to the wide range of its applications such as cosmetics, pharma-3

ceuticals, textiles, agriculture, and food science (Das et al., 2009; Demetzos,4

2016; Nelson, 2002; Prasad et al., 2014; Wu and Guy, 2009). The control5

of the final NP size and particle size distribution is of paramount impor-6

tance, especially in controlled drug delivery systems applications, in which7

a threshold dimension must not be exceeded to guarantee the correct drug8

release at the targeted area inside the blood stream (Hans and Lowman,9

2002; Petitti et al., 2008). In particular, polymer NP formation received10

a lot of attention from both experimental and modeling approaches, in or-11

der to determine the key parameters that govern the final NP targeted size12

(Celasco et al., 2014; Valente et al., 2012a,b; Zelenková et al., 2018). Due to13

their biological applications, polymers must be biocompatible and non-toxic;14

here, poly-ε-caprolactone (PCL) is used, since it has been considered one15

of the best candidates for this purpose (Who et al., 2000). One of the most16

used techniques for NP production is represented by the so-called flash nano-17

precipitation (FNP). It consists in the mixing of a ‘good solvent’ in which the18
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polymer is dissolved and a ‘bad solvent’ (also named as anti- or non-solvent),19

which is miscible with the good solvent but not compatible with the polymer.20

The anti-solvent destabilizes the mixture inducing polymer aggregation and21

precipitation of the formed NP. The phenomenon that governs NP forma-22

tion just described above is also labelled as solvent displacement (Saad and23

Prud’homme, 2016).24

Several studies have been already carried out to understand fluid dynam-25

ics effects at macro- and micro-scales (Johnson and Prud’homme, 2003b;26

Liu and Fox, 2006) for the confined impinging jets mixer (Johnson and27

Prud’homme, 2003a) (CIJM) and also for different geometries, such as the28

vortex mixer (VM) (Marchisio et al., 2009, 2008), the multi-inlet vortex mixer29

(MIVM) (Liu et al., 2008), the T-mixer (Gradl et al., 2006) and the Y-mixer30

(Choi et al., 2005). Other experimental (Lince et al., 2008) and modeling31

(Cheng et al., 2010; Di Pasquale et al., 2012; Lavino et al., 2015, 2017) at-32

tempts also showed the importance of accounting for the kinetics besides33

the thermodynamics for FNP. However, numerous are still the open topics34

under debate that need to be addressed. One of them is represented by the35

effect of different good solvents in NP formation via FNP and has become36

a crucial aspect of the industrial NP production. Here, the interesting case37

of NP formation in CIJM is considered, with PCL as solute and water as38

anti-solvent. Four different good solvents are investigated: acetone (ACT),39

acetonitrile (ACN), tetrahydrofuran (THF) and tert-butanol (TBA).40

The experimental procedure for polymeric NP production through solvent41

displacement has been extensively applied throughout the years, testing dif-42

ferent polymers; in particular, it was validated for PCL, obtaining also good43
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incorporation efficiency with different loading substances (Barresi et al., 2015;44

Celasco et al., 2014; Ferri et al., 2017; Lavino et al., 2019; Lince et al., 2008,45

2009, 2011; Massella et al., 2018; Valente et al., 2012a,b; Zelenková et al.,46

2015, 2014). In experiments, water quenching (i.e. sudden dilution with47

distilled water) is employed as stabilization technique over time of the pre-48

cipitated NP (Barresi et al., 2015; Ferri et al., 2017; Zelenková et al., 2015,49

2014), preventing further aggregation in the reactor outlet (Barresi et al.,50

2015; Saad, 2007) and preserving the particle distribution. This is implicitly51

taken into account in our modeling approach by ‘freezing’ the predicted NP52

sizes at the outlet of the mixer (Lavino et al., 2017, 2019; Lince et al., 2009)53

allowing a consistent comparison with the experimental data, as it will be54

explained more clearly in the theoretical and modeling section of this work.55

Experiments showed how different NP size and size distribution may be56

reached by just changing the good solvent (Ferri et al., 2017; Zelenková et al.,57

2015), a crucial aspect in several industrial contexts. At this level of descrip-58

tion, from the experiments side, it is hard to fully understand the parameters59

that play a key role in determining different mean NP size at the outlet of the60

process. Hence, modeling and simulations are here employed to further exam-61

ine those aspects and, eventually, to analyze them separately. A population62

balance model (PBM) which uses molecules as building blocks coupled with63

computational fluid dynamics (CFD) approach is used, already proposed and64

validated in an our previous work (Lavino et al., 2017), where the presence65

of the drug is neglected, as also in this present work. The main novelty of the66

proposed methodology consists in the incorporation of the thermodynamics67

theory of Flory-Huggins interaction parameter (Hansen, 2007) inside the ki-68
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netic model (PBM-CFD) to study the different good solvent effects on the69

final predicted NP size. Recent efforts also showed at the molecular scale70

the importance of accounting for the thermodynamics on the polymer con-71

formation in mixtures (Gartner and Jayaraman, 2018; Lavino et al., 2018,72

2020; Martin and Jayaraman, 2016). More specifically, the Flory-Huggins73

interaction parameter χ is here correlated to the mean radius of gyration,74

expressed, in turn, in terms of Flory law (Flory, 1953). The solubility of PCL75

is accounted for by using the Hansen solubility parameters (HSP) for the dif-76

ferent solvents investigated in this work. This modeling approach brings the77

advantage of considering thermodynamic quantities inside the kinetic model,78

such as the Flory-Huggins χ parameter and the HSP, extensively reported in79

literature for a wide range of solvents and, more importantly, shows how to80

correlate them to the prediction of the final mean NP size. In this way, it is81

possible to readily obtain a transferable model, when different good solvents82

are used in FNP. Kinetics and thermodynamics are therefore intertwined in83

a unique modeling tool and used to investigate the effect of different good84

solvents on NP precipitation. Another very important advantage is the pos-85

sibility to analyze single factors at a time, unlike experiments, getting a86

deeper insight into the main phenomena. In this way, the dynamics of mix-87

ing is studied separately from the dynamics of aggregation, highlighting the88

physical and modeling properties that mainly influence polymer aggregation,89

when different good solvents are used.90

The paper is structured as follows: modeling and theoretical backgrounds91

are presented in section 2, with particular attention to the multi-scale kinetic92

model (CFD and population balance model) together with the thermodynam-93
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ics of NP formation by solvent displacement; then, operating conditions and94

numerical details are reported in section 3. The main results are discussed95

in section 4 and, finally, conclusions and future developments are presented96

in section 5.97

2. Theoretical Background98

This section is dedicated to the theoretical background and the modeling99

strategy adopted in this work. The theory presented here is divided into100

two main subsections: i. the kinetic model, in which the main equations101

of the population balance model (PBM) and computational fluid dynamics102

(CFD) are presented; ii. the thermodynamic model, used to study the solute-103

solvent interactions, with a particular focus on the theory of real polymers104

in solution.105

The PBM-CFD coupling approach is able to describe the effect of kinetics106

on NP precipitation by accounting for the interplay of many factors, such as107

the inlet flow rate, the turbulent mixing and the particles-collision dynamics108

(details thereof will be presented in section 2.1), which have been proven to109

strongly affect the final NP size at certain operating conditions (Lavino et al.,110

2017). More specifically, the PBM predicts the mean particles size at the111

outlet of the mixer, as well as the evolution of the particles size distribution,112

also named cluster mass distribution (CMD), as it will be labelled from now113

on. On the other hand, the thermodynamics of real polymers is used to build114

up a modeling bridge, able to embrace the different good solvent effects, and115

strictly interconnected to the PBM, as it will be explained in section 2.2.116

Regarding the flow field, the steady-state Favre-averaged continuity and117
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Navier–Stokes equations are solved in the CFD code, together with the equa-118

tions for the turbulent kinetic energy, k, and the turbulent dissipation rate,119

ε, in line with the standard k− ε turbulence model (Andersson et al., 2012).120

As these equations are very well known and already implemented in the CFD121

code, they are omitted here for a sake of brevity and the readers can refer to122

our previous work Di Pasquale et al. (2012) for further details. The Favre-123

average approach (Favre, 1965) is necessary, since two fluids with different124

densities are involved. The fluid can still be considered incompressible, but125

density fluctuations are taken into account in this way.126

The effect of turbulent fluctuations on NP formation is modeled by the di-127

rect quadrature method of moments, coupled with the interaction-by-exchange-128

with-the-mean (DQMOM-IEM) method (Marchisio and Fox, 2005), in which129

two nodes/environments are employed for the quadrature procedure. Below,130

two subsections are dedicated respectively to the PBM (aggregation dynam-131

ics and micro-mixing models) and the thermodynamics of real polymers in132

solution, presenting the main modeling details employed in this work.133

2.1. Population Balance Model for FNP134

A population balance model (PBM) is employed to describe the evolution135

of the cluster mass distribution (CMD). Being this model extensively pre-136

sented in our previous work, here we report only the definition of the CMD137

and the kinetic equation in which the moments of the CMD are transported.138

For a complete detailed description of the PBM, please refer to Lavino et al.139

(2017). The CMD is modeled with a number density function, f(x, n), de-140

fined in such a way that the quantity f(x, n)dn represents the number den-141

sity of NP, or molecular clusters, containing n macromolecules at position x.142
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The term ‘macromolecule’ is here referred to as PCL molecule of molecular143

weight MW = 14000 g mol−1. The variable n is labelled as dimensionless144

cluster mass or aggregation number and it can be treated as a continuous145

variable, since it varies from one to very large numbers. In the pure good sol-146

vent stream the PCL is completely dissolved and no aggregation takes place.147

Therefore, the CMD corresponds to a Dirac delta function centred in n = 1.148

By normalising the CMD with the Avogadro number (necessary to keep the149

simulations numerically stable), the CMD in the good solvent stream (initial150

conditions) corresponds to the initial polymer molar concentration.151

The PBM is here solved with the quadrature method of moments (QMOM)152

approach (Marchisio and Fox, 2013). Let us recall the definition of the generic153

jth-order moment:154

m(j) =

∫ ∞
0

f(n)njdn. (1)

The advantage is twofold: on one hand, the computational cost is heavily155

reduced, compared to other discretized methods (Marchisio and Fox, 2013);156

on the other hand, the moments of the CMD represent physical measur-157

able quantities. Indeed, m(0) is the total cluster number density, m(1) is a158

conserved quantity and corresponds to the total number density of macro-159

molecules, whereas the ratio between m(1) and m(0) results in the average160

number of macromolecules per NP or molecular cluster.161

By applying the moment transform and the Favre average 〈·〉, the steady-162

state transport equation for the jth-order moment of the CMD f(n) reads as163

follows:164
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∂

∂x
·
(
ρ̄〈U〉

〈
m(j)

〉)
− ∂

∂x
·

(
ρ̄Γt

∂
〈
m(j)

〉
∂x

)
=

=
ρ̄

2

〈∫ ∞
0

∫ ∞
0

[
(n+ n′)

j − nj − n′j
]
β(n, n′)f(n)f(n′)dndn′

〉
, (2)

where Γt ≈ νt/0.7, is the turbulent diffusivity which is much larger than the165

Brownian diffusivity and is calculated from the turbulent viscosity, νt, by166

assuming a turbulent Schmidt number of 0.7 (Andersson et al., 2012), ρ̄ is167

the time-averaged fluid density and 〈U〉 is the Favre-averaged fluid velocity,168

as the particle Stokes number is much less than unity (Baldyga and Orciuch,169

2001). The aggregation kernel, β(n, n′), that appears in the source term on170

the right hand side of Eq. (2) represents the rate with which two clusters171

(or, equally, nanoparticles) collide and aggregate (second order point process172

Marchisio and Fox (2013)). The source term consists of two contributions:173

a negative term that states the disappearance of two clusters containing174

respectively n and n′ polymer macromolecules, and the appearance of the175

aggregate cluster (positive term) formed by n + n′ macromolecules. It is176

noteworthy to stress that molecular dynamics investigations (Di Pasquale177

et al., 2014) have shown that the freely-jointed chain model (Rubinstein178

and Colby, 2003) can be applied in this mathematical formulation, so that179

a cluster made by n molecules of molecular weight Mw will behave as a180

cluster made by one single PCL molecule of molecular weight n ·Mw. This181

assumption affects the formula used for the mean clusters size, in terms of182

Flory law, as it will be shown in section 2.2.183

The aggregation kernel accounts for two mechanisms: Brownian motions184

9



and turbulent fluctuations. Here, the assumption is that these two contri-185

butions are simply additive, and it holds on the physical evidence that at186

low initial polymer concentration in good solvent stream, Brownian aggrega-187

tion dominates over the turbulent one, and vice versa at high initial polymer188

concentration. Applying the Stokes-Einstein formulation (Elimelech et al.,189

1998), the aggregation kernel in function of the mean radius of gyration of190

the two NP, or molecular clusters, that are self-assembling or aggregating191

assumes the following expression (Cheng et al., 2010):192

β(n, n′) = η
2kBT

3µ

(JRg(n, xs)K + JRg(n
′, xs)K)

2

JRg(n, xs)KJRg(n′, xs)K
+

+ 1.2944η

√
ε

ν
(JRg(n, xs)K + JRg(n

′, xs)K)
3
, (3)

where µ is the molecular viscosity of the suspending liquid (i.e. mixture193

of the good and bad solvents and therefore function of the good solvent194

molar fraction xs (Lavino et al., 2017)), kB is the Boltzmann constant, ε is195

the turbulent dissipation rate, ν is the mixture kinematic viscosity and J·K196

represents the ensemble-average.197

The term η stands for an aggregation efficiency, only dependent on the198

initial supersaturation ratio. It is represented by a stepwise function: zero for199

undersaturated solutions and one for supersaturated solutions. The super-200

saturation ratio is defined as the ratio between the local PCL concentration201

and its equilibrium one. Their expressions are reported in our previous work202

(Lavino et al., 2017). When the supersaturation ratio is locally greater than203

unity, or in other words when the local PCL concentration is greater than its204
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local solubility (i.e., equilibrium concentration), which in turn depends on205

the local solvent composition, self-assembly and aggregation are triggered;206

namely PCL molecular self-assemble forming NP that then further aggre-207

gate forming the final NP. The main assumption is that molecules are more208

stable when in a molecular cluster and therefore they self-assemble or aggre-209

gate irreversibly. This implies that the energy barrier for particle formation210

is null and therefore particle formation, under these conditions, can be in-211

terpreted as spinodal decomposition rather than nucleation. In line with the212

classical nucleation theory this model is applicable only when the initial su-213

persaturation is very large, as also found out in our previous work, where the214

model was originally validated by Lavino et al. (2017). An accurate quantifi-215

cation of the precipitated PCL with respect to what is left in solution during216

FNP still remains an unsolved issue; when the supersaturation ratio is much217

larger than unity, it is reasonable to assume that most of PCL precipitates218

out with the operating conditions investigated in this work.219

JRg(n, xs)K represents the ensemble-averaged radius of gyration, depen-220

dent on the aggregation number n and on the good solvent molar fraction221

xs. It is expressed in terms of the Flory law, as explained in subsection 2.2.222

Moreover, the dynamics of mixing is also considered, as turbulence fluc-223

tuations and local mixing gradients (supersaturation) affect PCL aggrega-224

tion. More specifically, the solvent mixture fraction is described in terms of225

probability density function (PDF) for the good solvent mass fraction, ξ, in226

the good solvent-water mixture. As anticipated above in the text, mixing is227

treated with the DQMOM-IEM approach with only two nodes/environments.228

This turns out to be a strategic approach in modeling a binary mixture when229
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no reaction occurs (Di Pasquale et al., 2012; Gavi et al., 2007). In line with230

the DQMOM-IEM, the weights and weighted abscissas in the two environ-231

ments 1 and 2 are directly solved through suitable transport equations:232

∂

∂x
(ρ̄〈U〉p1)−

∂

∂x

(
ρ̄Γt

∂p1
∂x

)
= 0, (4)

and p2 = 1− p1 (the PDF integrates to unity), together with:233

∂

∂x
(ρ̄〈U〉p1ξ1)−

∂

∂x

(
ρ̄Γt

∂

∂x
(p1ξ1)

)
=

= ρ̄γMp1p2 (ξ2 − ξ1) +
ρ̄Γt

ξ1 − ξ2

(
p1
∂ξ1
∂x

∂ξ1
∂x

+ p2
∂ξ2
∂x

∂ξ2
∂x

)
. (5)

The right-hand side of Equation (5) represents the molecular mixing, also234

referred to as micro-mixing term, mathematically closed with the IEM ap-235

proach (Fox, 2003); γM =
Cφ
2
ε
k

is the micro-mixing rate, where Cφ is a pa-236

rameter that depends on the local Reynolds number (Fox, 2003) and ε and237

k are respectively the turbulence dissipation rate and the turbulent kinetic238

energy. More details can be found in Gavi et al. (2007). By inverting the239

subscripts 1 and 2, the transport equation related to p2ξ2 can be obtained.240

ξ1 and ξ2 can be interpreted as local good solvent mass fractions in the241

two ”environments”, representing turbulent composition fluctuations. The242

Favre-averaged mass fraction can be calculated as follows:243

〈ξ〉 =

∫ 1

0

p(ξ)ξdξ ≈ p1ξ1 + p2ξ2, (6)

where p(ξ) is the PDF related to the mixture fraction ξ. According to Equa-244
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tion (6), also the good solvent volume fraction can be defined as:245

〈ξv〉 = p1ξ1,v + p2ξ2,v, (7)

where ξi,v is the volume fraction in the environment i = 1, 2, function of the246

mass fraction through the relation ξi,v = [1 + (1/ξi − 1) · ρs/ρw]−1, with ρs247

and ρw the good solvent and water densities, respectively.248

2.2. Thermodynamics of real polymers in solution249

This section is referred to the thermodynamic model that is incorporated250

into the PBM-CFD model. Let us recall the Flory theory of real polymers251

in solution (Flory, 1953). The polymer conformation in a given mixture252

is the balance between attractive and repulsive forces among the repeated253

units, taken into account through the so called excluded volume v. The254

polymer conformation is strictly related to the nature of the solvent and,255

more specifically, the polymer mean squared radius of gyration, appearing in256

Eq. (3), can be expressed via the Flory law, that can in turn be extended to257

molecular clusters or NP containing n polymer molecules, as shown in our258

previous work:259

JRg
2(n, xs)K = ks(xs)(nMw)2νs(xs), (8)

where, as mentioned, the freely-jointed chain hypothesis is applied for a260

molecular cluster containing n PCL molecules, Mw is the molecular weight261

of a single PCL molecule and ks(xs) and νs(xs) are the Flory parameters,262

dependent, in turn, on the good solvent molar fraction xs and on the na-263

ture of the solvent, as indicated by the subscript s. As far as the acetone is264
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concerned as good solvent, molecular dynamics calculations have been per-265

formed and interpolated and the corresponding functional forms determined266

in a previous work (Di Pasquale et al., 2014):267

ks(xs) = kref (xref ) = 0.0064 exp (−3.15xref ), (9)

νs(xs) = νref (xref ) = 0.30 + 0.45xref − 0.15x2ref , (10)

where the subscript ’ref ’ is introduced and from now on it will refer to as the268

reference solvent, namely the solvent for which all the necessary information269

is already provided from previous studies (acetone in this case).270

When the repulsive forces dominate on the attractive ones among the271

monomers, the excluded volume v assumes a positive value and the polymer272

shows a more stretched (coil) conformation, corresponding to a good solvent273

condition, and the Flory exponent is equal to 3/5. On the contrary, when274

the monomer attractive forces prevail, the excluded volume v is negative and275

the polymer exhibits a globule conformation. The latter case corresponds to276

a bad solvent condition and the Flory exponent is equal to 1/3. When the277

two forces counterbalance each other, the excluded volume is null and the278

polymer assumes an ideal conformation, related to the so called ’θ-condition’.279

At the θ-condition, the Flory exponent is equal to 1/2. The close proximity to280

the bad solvent condition is crucial to be locally reached in FNP, in order to281

induce the spontaneous self-assembly of the polymer molecules in molecular282

cluster or NP.283

As a matter of fact, then, the polymer conformation is strictly depen-284
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dent on the nature of the surrounding solvent; therefore, the Flory-Huggins285

interaction parameter, χs,p, is introduced in this modeling framework, being286

this one a direct measure of the energetic interaction of two components, e.g,287

a solute p and a solvent s, in turn, strictly correlated to the solubility of288

the solute in that specific solvent. The solubility is here taken into account289

by using the Hansen solubility parameters (HSP). The model presented in290

this work correlates the radius of gyration with the interaction parameter χ291

and the HSP, in order to be able to properly define the Flory parameters292

(ks(xs) and νs(xs)) functional forms in Eq. (8), when different good solvents293

are employed.294

Before getting into the HSP theory, a brief mention to the Hildebrand295

approach is mandatory. The Hildebrand solubility parameter (Hildebrand296

and Scott, 1950) of a substance corresponds to the cohesive energy per unit297

volume (it quantifies the work necessary to keep molecules close to each298

other) and reads as follows:299

δ =

(
∆Hv −RT

V

)1/2

, (11)

where ∆Hv is the vaporization enthalpy, R is the gas constant, T is the300

absolute temperature and V is the molar volume.301

Hansen (2007) proposed a decomposition of the Hildebrand parameter302

into three different contributions, leading to the so-called Hansen solubility303

parameters (HSP):304

δ =
(
δ2D + δ2P + δ2H

)1/2
, (12)
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where δD considers the dispersion attractive forces (non-polar), δP accounts305

for the permanent dipole-permanent dipole interactions and δH for the hy-306

drogen bonds. The main advantage of the HSP approach is that polar effects307

are explicitly considered, differently from the Hildebrand parameter that is308

more suitable for apolar systems. The ability of a given solvent to solubilize309

a solute (e.g., polymer) is expressed in terms of solubility ‘distance’ from the310

solute itself and takes the form of the radius of a sphere in Hansen solubility311

space {δD, δP , δH} (Hansen, 2007):312

Ra2(δ) = 4(δD,s − δD,p)2 + (δP,s − δP,p)2 + (δH,s − δH,p)2, (13)

where Ra(δ) is the solubility ‘distance’, in terms of sphere radius in the313

Hansen space, and the subscripts s and p refer respectively to the solvent314

and the polymer. The term ‘4’ is added in order to make the shape of this315

functional form more spherical and less elliptical. The whole derivation can316

be found in Hansen (2007). The Flory-Huggins parameter relative to the317

interaction between the solvent and the polymer χs,p can be expressed as a318

function of the HSP through:319

χs,p =
1

2
·
(
Ra(δ)

2Rm

)2

, (14)

where Ra(δ) is the solubility distance, function of the HSP, as reported in320

Eq. (13) and Rm represents the radius of the solubility sphere, namely the321

maximum solubility distance (in Hansen solubility space) that allows the sol-322

vent to dissolve the solute. It is worthwhile to stress again that in Hansen323

phase space the coordinates are square roots of energies per unit volume;324
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therefore, talking about ‘solubility distances’ refers implicitly to ‘energetic325

distances’ contributions between two components. The parameter Rm is de-326

fined in such a way that the dependence of the solubility parameters on the327

polymer molecular weight is accounted for, thanks to the following expres-328

sion:329

R2
m = 0.5(1 + 1/r1/2)RT/Vm, (15)

where Vm is the molar volume of the solvent and r is the degree of poly-330

merization, which can be calculated as the ratio between the total PCL331

macromolecule and the single repeated unit molecular weights.332

Solvents characterized by Ra > 2Rm are classified as non-solvents (or bad333

solvents) with respect to that specific solute. On the contrary, all the solvents334

that belong to the Hansen solubility sphere (Ra/2Rm smaller than unity)335

are classified as good solvents for that solute. In terms of χs,p interacting336

parameter, what stated above is equivalent to infer that when χs,p < 1/2 the337

system is in good solvent condition, namely the solute molecule shows a more338

stretched conformation because the solvent-solute interactions are preferred339

over the solute-solute ones; χs,p > 1/2 corresponds to bad solvent condition,340

namely the solute molecule shows a more globule conformation because the341

solute-solute interactions are preferred over the solvent-solute ones; χsp =342

1/2 is the θ-condition, corresponding to ideal conformation of the solute343

molecule occurring when the solute-solvent and solute-solute interactions are344

energetically equivalent.345

As stated above, it is the local close proximity to bad solvent condition346

that energetically (and also entropically) drives the spontaneous PCL self-347
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assembly. Under these conditions, the radius of gyration of a single polymer348

molecule, Rg, can be expressed as a function of the Flory-Huggins parameter,349

χs,p (Rubinstein and Colby, 2003):350

Rg ≈
b2

|v|1/3
N1/3 =

bN1/3

(2χs,p − 1)1/3
, (16)

where b is the Kuhn length (representative of the monomer length) and N351

is the number of repeated units that form the polymer chain. The expres-352

sion reported in Eq. (16) is for real polymers in solution, since the negative353

excluded volume v is taken into account, as well as the Flory exponent 1/3354

appears, meaning that the single polymer molecule is surrounded by a bad355

solvent.356

Starting from the relationship reported in Eq. (14), combined with Eq. (16),357

the whole procedure to find the Flory parameters functional forms for an un-358

known good solvent is developed and extensively explained in the following359

section.360

3. Operating conditions and numerical details361

3.1. Experimental background362

Details about the experimental set-up which this modeling work is based363

on are here reported. As already stated, PCL is the polymer employed as so-364

lute in the FNP process investigated in this work. It is especially suitable for365

NP production in the pharmaceutical field and for biological applications,366

since PCL is bio-compatible and non-toxic (Who et al., 2000); among the367

other advantages, it is also permeable to low molecular weight drugs and can368

therefore be used for diffusion controlled delivery systems (Le Roy Boehm369
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et al., 2000). The experimental procedure for PCL NP production has been370

extensively validated throughout the years (Barresi et al., 2015; Celasco et al.,371

2014; Ferri et al., 2017; Lavino et al., 2019; Lince et al., 2008, 2009, 2011;372

Massella et al., 2018; Valente et al., 2012a,b; Zelenková et al., 2015, 2014).373

In the experimental context, the NP stabilization over time is of paramount374

importance and, in order to prevent further aggregation at the mixer outlet375

(Barresi et al., 2015; Saad, 2007) and to preserve the particle size distribu-376

tion, the outlet CIJM stream is usually quickly diluted in ultra-pure water377

and gently stirred to stabilize the NP suspension. Dilution, also labelled as378

‘quench’, avoids the size increase due to Ostwald ripening effects (Barresi379

et al., 2015; Ferri et al., 2017; Zelenková et al., 2015, 2014) and keeps the380

precipitated NP stable up to 20 days (Le Roy Boehm et al., 2000). The381

water quench volume can have an effect of the final NP size (Barresi et al.,382

2015; Ferri et al., 2017), therefore all the experimental data shown here are383

obtained by quenching with the same water amount.384

Although several polymers have been tested for NP production via FNP385

(Saad, 2007), very little experimental data are available in literature - to the386

best of the authors knowledge - showing the effect of different good solvents387

for the same specific type of polymer. As this represents the aim of this388

work, only experimental studies using PCL as polymer solute have produced389

enough data to guarantee a consistent comparison with our modeling results.390

The experimental measurements were conducted via Dynamic Light Scat-391

tering (DLS) in diluted samples. By means of this technique the hydrody-392

namic radius, RH , is estimated as the ratio between the 7th- and the 6th-order393

moments of the NP distribution. However, from our modeling point of view,394
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those quantities can be determined only with a numerical regression since the395

highest order moment we solve numerically is of order three (only two nodes396

in the aggregation model solved via QMOM). Therefore, it turns out to be397

more reasonable to express the mean particle size in terms of ratio between398

1st- and 0th-order moments of the radius of gyration, Rg, distribution. De-399

spite the hydrodynamic radius is generally greater than the radius of gyration400

(Bhattacharjee, 2016), we made the approximation: RH ≈ Rg which holds401

particularly for spherical NP. Ultimately, it is an acceptable assumption for402

narrow CMD characterized by small poly-dispersity indexes (Barresi et al.,403

2015; Ferri et al., 2017).404

3.2. Experimental set up405

Four different good solvents are investigated in this work: acetone (ACT),406

acetonitrile (ACN), tetrahydrofuran (THF) and tert-butanol (TBA). As stated407

above, the acetone is labelled as the reference solvent, since a full modeling408

description thereof was already provided from previous molecular dynamics409

(Di Pasquale et al., 2014) and CFD simulations (Di Pasquale et al., 2012;410

Lavino et al., 2017). The geometrical dimensions of CIJM are: inlet and out-411

let diameters respectively equal to 1 and 2 mm. The width of the chamber412

is equal to 4.76 mm and its height is two times the width, in line with our413

previous work (Di Pasquale et al., 2012; Lavino et al., 2017).414

3.3. Numerical details415

According to the quadrature-based moments method employed in this416

work, the mean radius of gyration of a population of NP is calculated by417

means of nodes and weights of the quadrature procedure, as reported in418
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Lavino et al. (2017). The comparison with experiments is done in terms of419

this value exiting the CIJM. As stated above, during experiments the aggre-420

gation is limited and the particles are stabilized by quench water immediately421

after precipitation, preventing in this way further aggregation. It is reason-422

able to conclude, therefore, that measuring an average property at the outlet423

of the mixer from our simulations is totally equivalent to measure experi-424

mentally the given property immediately after quenching, via dynamic light425

scattering. However, it is worthwhile to mention that uncertainties present in426

the current work and the derivation of the models (Flory parameters, aggre-427

gation kernel, etc.) keep the predicted NP dimensions always included into428

the uncertainty range of the experimental results (Ferri et al., 2017; Lavino429

et al., 2017).430

It is important to stress here that the choice of the good solvent has431

multiple effects on the FNP process. Indeed, by changing the good solvent432

we simultaneously change the thermodynamics of the interaction between the433

polymer chains and the good solvent and bad solvent mixture, the kinetics of434

polymer molecule self-assembly and the dynamics of mixing of the two feed435

streams (i.e., good and bad solvent). As mentioned in the introduction, the436

main objective of this work is to quantify each of these effects (on the final437

NP size and CMD) separately.438

Density, viscosity and molar volume of the good solvents represent the439

physical-chemical properties that are expected to play a role in the FNP pro-440

cess. The density of the good solvent affects the fluid dynamics in the CIJM441

and the position of the impinging plane. The viscosity of the good solvent442

determines, via the Stokes-Einstein law already included in the aggregation443
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kernel reported in Eq. (3), the kinetics of molecules and molecular cluster444

self-assembly/aggregation. The molar volume of the good solvent defines the445

final good solvent molar fraction (for a given volume ratio between good and446

bad solvents). They are schematically listed in Table 1.447

Table 1: Physical-chemical properties of the good solvents and Reynolds number, Res,
range investigated in this work. Res refers to the good solvent inlet jet stream (see Eq.
(17)).

Good Density, Viscosity, Molar volume, Res
solvent kg m−3 Pa·s cm3mol−1 range

ACT 780.85 3.10 × 10−4 74.38 1069 – 6414
ACN 771.45 3.26 × 10−4 53.21 1004 – 6026
THF 874.78 4.34 × 10−4 82.43 855 – 5133
TBA 777.89 3.46 × 10−3 95.29 95 – 573

As it can be seen in Table 1, acetone and acetonitrile have similar values448

of density and viscosity; instead, acetonitrile has a smaller molar volume;449

this may become a crucial factor that affects the mean NP size, as it will450

be shown in section 4. On the contrary, THF has higher density, viscosity451

and molar volume with respect to acetone and acetonitrile. More generally,452

despite all the solvents investigated here present similar physical properties,453

it is noteworthy to stress that TBA exhibits one order of magnitude higher454

viscosity. The way in which the density fluctuations are taken into account,455

as well as the local viscosity and molar fraction dependence on molar volumes,456

are reported in an our previous work (Lavino et al., 2017), and therefore here457

omitted for the sake of brevity.458

Although experiments and simulations are conducted by varying the inlet459

flow rate, the mean radius of gyration of the NP exiting the CIJM is evaluated460

as a function of Reynolds number, Res, referred to the good solvent inlet jet461
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stream and its definition reads as follows:462

Res =
ρsdinuj
µs

(17)

where din is the CIJM inlet diameter, uj is the mean inlet jet velocity, ρs463

and µs are the good solvent density and viscosity respectively, as reported464

in Table 1. When comparing the dynamics of aggregation for different good465

solvents, the Reynolds number includes the inlet operating conditions as well466

as the physical properties of the good solvent to make the outcome of this467

work a general discussion, as it will be clearer in section 4.468

Solvents and polymer Hansen solubility parameters (HSP), as well as the469

corresponding distances from PCL, Ra, are listed in Table 2.470

Table 2: Hansen solubility parameters (HSP) and distances, Ra, from PCL (Eq. (13)) for
all the components of the investigated system.

δD, MPa1/2 δP , MPa1/2 δH , MPa1/2 Ra, MPa1/2

PCL 17.0 4.8 8.3 -
THF 16.8 5.7 8.0 1.0
ACT 15.5 10.4 7.0 6.5
TBA 15.2 5.1 14.7 7.4
ACN 15.3 18.0 6.1 13.8
Water 15.6 16.0 42.3 35.9

The distances from PCL are representative of the solvent affinity with471

the polymer. More specifically, the lower is the distance (last column in472

Table 2), the higher is the solvent-solute affinity. As expected, the water sol-473

ubility distance is the highest value, much higher than the Hansen solubility474

sphere radius for PCL, Rm ≈ 9.8 MPa1/2 (calculated by means of swelling475

tests Bordes et al. (2010)), proving therefore to behave as bad solvent. In476
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the Hansen phase space, acetone, THF and TBA belong to the Hansen sol-477

ubility sphere, behaving as good solvents. In the case of acetonitrile, the478

distance from PCL is shown to be slightly higher than the sphere radius.479

It is worthwhile mentioning that Bordes et al. (2010) obtained this value of480

Rm by performing swelling tests in which PCL initial concentration was two481

orders of magnitude higher than the one employed in this work. It is there-482

fore reasonable to assume that Rm would be much higher in this context,483

so that also acetonitrile leads to a full PCL solubilization, as seen in our484

experiments (Ferri et al., 2017), and consequently behaving as good solvent485

in these operating conditions.486

In this analysis, the solute is the PCL and the solvent is the ‘good solvent-487

water’ mixture. Being the second phase made by a binary mixture, all the488

solubility parameters (e.g., HSP) and physical properties (e.g., molar volume)489

involved in the following calculations are weighted on the good-bad solvents490

volume and molar fractions. The binary mixture phase will be therefore491

generically labelled as ‘solvent’ from now on. The single PCL macro-molecule492

molecular weight Mw = 14000 g mol−1 and the repeated unit molecular493

weight Mo = 114 g mol−1. The term r appearing in Eq. (13) corresponds to494

the degree of polymerization, here simply evaluated as Mw/Mo.495

Let us recall that in FNP the PCL solubility limit is overcome and the496

self-assembly induced only thanks to the presence of the bad solvent, which497

is a local effect. Furthermore, the mixing is generally very fast and efficient,498

leading to a well micro-mixed system in almost all the domain of the CIJM499

(Gavi et al., 2007). Hence, the assumption of considering the polymer chain500

at the mean good solvent molar fraction x̄s holds, after mixing occurs, in501
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the range x̄s ∈ [0.15, 0.25] for all the good solvents, since the good solvent-502

to-water ratio in volume is constant and equal to unity. Consequently, the503

three-components phase diagram (water, good solvent and PCL) can be ap-504

proximated as a two-components one (the polymer as solute and the binary505

mixture as solvent) (Flory, 1953). In these conditions, the single PCL ra-506

dius of gyration dependence on χs,p can be expressed by means of Eq. (16),507

since the binary mixture behaves as a bad solvent, leading the single macro-508

molecules to self-assemble. This concept will be confirmed by looking at the509

χs,p values, reported in Table 3 later on.510

By using the relation reported in Eq. (16) for two different solvents s1511

and s2 (e.g., s1 = acetonitrile-water and s2 = acetone-water), and assuming512

that the Kuhn length b (mainly a solute property) does not change too much513

for any solvent used, the following ratio can be readily obtained:514

JRg(n = 1)Ks1
JRg(n = 1)Ks2

≈ (2χs2,p − 1)1/3

(2χs1,p − 1)1/3
= Sf , (18)

where Sf is a scaling ratio, function of the solely Flory-Huggins parameters515

χs1,p and χs2,p, calculated starting from the HSP through Eq. (14). The516

adopted strategy consists in setting s2 as the reference solvent, i.e., acetone-517

water in this case, for which the functional forms of Flory parameters are518

known from MD (Di Pasquale et al., 2014). By rearranging Eq. (18) as a519

function of the reference solvent, the following equality holds:520

√
ks1(xs1)M

2νs1(xs1)
w = Sf ·

√
kref (xref )M

2νref (xref )
w , (19)

where, as stated above, the subscript ref refers to the acetone-water mix-521
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ture. Scaling factors Sf and Flory-Huggins parameters χs,p referred to the522

solvent-polymer systems investigated in this work, namely acetone-water,523

acetonitrile-water, THF-water and TBA-water, evaluated at mean good sol-524

vent molar fraction x̄s, are reported in Table 3.525

Table 3: Flory-Huggins parameter, χs,p, for acetone, acetonitrile, THF and TBA as good
solvents with the relative scaling factors obtained from Eq. (18), at mean good solvent
molar fraction, x̄s.

Solvent x̄s
Flory-Huggins parameter, Scaling factor,

χs,p Sf

ACT-water 0.20 0.926 1.00
ACN-water 0.25 1.007 0.94
THF-water 0.18 0.873 1.05
TBA-water 0.16 1.251 0.83

By looking at Table 3, the Flory-Huggins parameter is always greater than526

1/2 (θ-condition) for each solvent investigated here. This confirms what was527

already stated above: the systems are in bad solvent conditions and the single528

PCL macromolecules are spontaneously led to aggregate.529

At this point, an iterative procedure can be carried out, based on Eq. (19)530

and on the values reported in Table 3. More specifically, Eq. (19) still presents531

two degrees of freedom, that are the Flory constant and exponent functional532

forms. By putting νs1(xs1) = νref (xs1) as starting value, ks1(xs1) is univo-533

cally determined and with this new set of Flory parameters, say k∗s1(xs1) and534

ν∗s1(xs1), simulations can be performed and the deviation against the experi-535

mental data is detected. Based on the deviation with respect to experiments,536

the Flory exponent is suitably adjusted to a new functional form, say ν∗∗s1 (xs1)537

and, by means of Eq. (19), a new functional form for k∗∗s1(xs1) is obtained.538

With this new set of Flory parameters, simulations are performed until this539
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iterative procedure leads to an acceptable accordance against experiments.540

This corresponds to the Flory parameters reported in Table 4.541

Table 4: Flory parameters functional forms for acetone (reported in Eq. (9) and (10)),
acetonitrile, THF and TBA.

Good solvent ks(xs) νs(xs)

ACT 0.0064 exp (−3.15xs) 0.30 + 0.45xs − 0.15x2s
ACN 0.0055 exp (−3.15xs) 0.30 + 0.40xs − 0.10x2s
THF 0.0047 exp (−3.15xs) 0.30 + 0.62xs − 0.32x2s
TBA 0.0056 exp (−3.15xs) 0.30 + 0.42xs − 0.12x2s

The adjustment of the Flory parameters functional forms deserves further542

explanations. Regarding the Flory constant, ks(xs), only the proportionality543

constant of the exponential is adjusted with respect to the function referred544

to acetone, Eq. (9). As far as the Flory exponent νs(xs) is concerned, it545

corresponds to a parabolic profile (Eq. (10)); therefore, three conditions are546

needed: two of them are represented by the exponent value in pure good547

and pure bad solvent, that are respectively 3/5 and 1/3, in line with the548

Flory theory. The third condition is the only degree of freedom that the549

user needs to fulfill and it might correspond to its value at the mean good550

solvent molar fraction, νs(x̄s), that is suitably adjusted during the iterative551

procedure presented above.552

4. Results553

First, only the dynamics of mixing is shown in order to assess the im-554

portance of changes in physical properties when different good solvents are555

used in FNP. In Figure 1 two quantities related respectively to macro- and556

micro-mixing are reported for all the four solvents investigated here and for557
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two feeding flow rates. The first one is represented by the good solvent vol-558

ume fraction, 〈ξv〉 (see Eq. (7)). It is clear how in general the macro-mixing559

is very efficient for all the solvents since in almost the whole domain 〈ξv〉560

approaches to 0.5, as expected by using an inlet volume flow rate ratio equal561

to unity. Two different flow rates are here considered: 40 mL/min and 100562

mL/min. Further mathematical details about the macro-mixing are reported563

in Appendix A.564

Figure 1: Good solvent volume fraction, 〈ξv〉 (Eq. (7)), and micro-mixing term,
γMp1p2 (ξ2 − ξ1) (Eq. (A.4)), for which a further mathematical and physical analysis
is reported in section 2.1 and in Appendix A. Two inlet flow rates are here reported: 40
mL min−1 (left side) and 100 mL min−1 (right side).
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Besides macro-mixing, it is worthwhile to evaluate also the micro-mixing,565

being this one a fundamental aspect of FNP (Di Pasquale et al., 2012). As566

already mentioned, the mixture fraction is modeled via the DQMOM-IEM567

for which the corresponding transport equation is reported in section 2.1. A568

particular focus is given now to the micro-mixing term of that transport equa-569

tion which corresponds to γMp1p2 (ξ2 − ξ1), where γM is the micro-mixing570

rate, namely expressing the rate with which good solvent and bad solvent571

mix at the molecular level. pi and ξi correspond respectively to the weights572

and abscissas (or nodes, or environments) of the quadrature formula, in the573

two environments i = 1, 2, in line with the DQMOM approach (Marchisio574

and Fox, 2005). The whole micro-mixing term describes how fast the micro-575

mixing variance is dissipated by turbulence (Fox, 2003; Liu and Fox, 2006).576

The entire mathematical framework is here omitted, being already presented577

in our previous works (Di Pasquale et al., 2012; Lavino et al., 2017) and a578

further mathematical elaboration is provided in Appendix A, in which the579

relationship between micro-mixing term and micro-mixing variance is clearly580

stated.581

At this level of description, Figure 1 points out that the micro-mixing term582

is very similar for acetone, acetonitrile and THF; a different trend is detected583

for TBA, for which micro-mixing turns out to be less efficient compared with584

the other good solvents. It is noteworthy to stress here that the numerical585

values in the contour plots must be interpreted as absolute values, since586

negative terms may come out from the local value of the abscissas in the587

two environments of the quadrature. Indeed, this is proven by looking at588

the region in which the turbulence is created and dissipated, which is where589
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molecular-mixing or micro-mixing occurs. It is clearly less shrunk around590

the impinging plane than in other solvents, showing wider spatial gradients591

in the mixer domain. This might be induced by the viscosity that in the592

case of TBA is shown to be much larger (one order of magnitude) than in593

the other solvents. These results, by just looking at the mixing dynamics of594

the system, already allows us to predict a different scenario for TBA with595

respect to acetone, acetonitrile and THF.596

Let us move now on the dynamics of aggregation. In the case of the first597

three solvents (i.e., acetone, acetonitrile, THF), whose dynamics of mixing,598

only depending on their physical properties, is shown to be the same, it is599

worthwhile to conduct the following analysis. For the sake of brevity, let us600

consider only acetone and a ‘virtual’ solvent, characterized by the acetoni-601

trile physical properties (Table 1) and by acetone functional forms of Flory602

parameters, namely Eq. (9) and (10). By simulating these two solvents with603

the solely Brownian aggregation kernel active, we can quantify the dynamics604

of self-assembly of polymer molecules into clusters and of small clusters into605

larger clusters (before turbulent aggregation takes over). Although the same606

functional forms of the acetone Flory parameters are considered here also607

for the ‘virtual’ solvent, the results show a very different profile, in terms of608

mean radius of gyration of the NP at the outlet of the mixer. This result609

is depicted in Figure 2 and tells us that, although the dynamics of mix-610

ing is identical between acetone and the ‘virtual’ solvent, the aggregation611

behaves in a very different way. The only physical explanation of that is612

attributable to one physical property and, more specifically, lies on the dif-613

ferent molar volumes of the two solvents (look at Table 1), because the other614
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physical properties (density and viscosity) are very similar to each other, as615

also demonstrated by looking at the respective Reynolds number values (see616

Table 1). The molar volumes affect the molar fraction of the mixture, xs, as617

reported in Table 3 concerning its mean value, after mixing takes place. The618

Flory parameters functional forms are, in turn, function of molar mixture619

fraction. This analysis demonstrates that the differences between good sol-620

vents about the dynamics of aggregation only depend on Flory parameters.621

Furthermore, it is shown how the modeling approach presented in this work622

can be suitably employed to quantify the relative importance of the different623

mechanisms involved in particles formation.624

Figure 2: Mean radius of gyration as a function of Reynolds number referred to the good
solvent inlet jet stream, with only Brownian aggregation for PCL initial concentrations
equal to 6.0 mg/mL in acetone (triangles) and the ‘virtual’ solvent (squares), character-
ized by the acetonitrile physical properties and by the acetone functional forms of Flory
parameters.
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At this point of the current analysis, it is straightforward that the gap625

against experiments must be bridged by suitably adjusting the functional626

forms for ks(xs) and νs(xs) for all the solvents investigated here. As outcome627

of the iterative procedure presented in section 3 (see Eqs. (18) and (19) and628

Table 3), the final functional forms of the Flory parameters are determined629

and listed in Table 4. These new functional forms are able to guarantee a630

good agreement with experiments, as depicted in Figure 3 (TBA- and THF-631

water systems) and Figure 4 (acetone- and acetonitrile-water systems). The632

range of PCL initial concentrations in the good solvent stream spans from633

3.0 to 9.0 mg mL−1. The experimental error bars are also included.634

Note that the accordance of the current model with experiments is in635

line with the results found out in our previous work (Lavino et al., 2017).636

As far as acetone, acetonitrile and THF are concerned, the agreement is637

excellent starting from medium PCL initial concentration in good solvent638

stream of about 5 mg/mL, namely the predicted NP dimensions are included639

into the uncertainty range of the experimental results. In the case of TBA,640

where the mixing dynamics is less efficient than in the other three good641

solvents, the model shows to be transferable, by means of the Flory-Huggins642

solubility theory. The experimental profile is qualitatively caught by this643

purely-aggregative model, reproducing the negligible effect of the kinetics644

on the final mean radius of gyration (flat profile of NP size as function of645

the inlet good solvent Reynolds number) (Johnson and Prud’homme, 2003b;646

Zelenková et al., 2015). This behaviour is also explained by looking at the647

Res range experienced by TBA in FNP with respect to the other systems, as648

clearly shown in Figures 3 and 4. Indeed, Res ranges of acetone, acetonitrile,649
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Figure 3: Mean radius of gyration of the NP exiting the CIJM versus the Reynolds number
referred to the good solvent inlet jet stream as measured in experiments (black symbols)
and as predicted by the purely-aggregative model (dashed line, empty symbols) for PCL-
14000 initial concentrations equal to 3.0 (top panel) and 5.0 (bottom panel) mg/mL in
THF (diamonds) and TBA (inverted triangles).

and THF are almost the same as well as one order of magnitude higher650

than TBA inlet Reynolds number, mainly due to the TBA viscosity (see651

Table 1). In the case of TBA, Res value presumes that the turbulence is652

not completely developed inside the CIJM leading to less efficient mixing653

dynamics - as already stated - and, therefore, to a less important effect of fluid654

dynamics on the final mean NP size with respect to the other good solvent655

systems, as reproduced by both experiments and simulations. Results show,656
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Figure 4: Mean radius of gyration of the NP exiting the CIJM versus the Reynolds number
referred to the good solvent inlet jet stream as measured in experiments (black symbols)
and as predicted by the purely-aggregative model (dashed line, empty symbols) for PCL-
14000 initial concentrations equal to 3.0 (top), 6.0 (middle) and 9.0 (bottom) mg/mL in
acetone (triangles) and acetonitrile (squares) as the good solvents.
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however, a quantitative gap against experiments, which, on the contrary, is657

not observed in the case of THF (bottom panel in Figure 3) at the same658

PCL initial concentration (5 mg/mL). It is worthwhile to stress that this659

gap cannot be numerically overcome by using the proposed computational660

tuning (described in section 3, in order not to break the physics of the system,661

namely having higher values of Flory parameters for TBA than in acetone662

(look at Figure 5) which, instead, is shown to have a better affinity with PCL663

(lower solubility distance in Hansen phase space). This gap must be therefore664

related to another phenomenon, as for example the role of nucleation, here665

neglected (Lavino et al., 2017)). At constant PCL inlet concentration (around666

5 mg/mL), nucleation might be more important for TBA than in the other667

systems, in which turbulence is demonstrated to play a secondary role in668

the aggregation for PCL inlet concentration under 5 mg/mL by our previous669

CFD analysis (Lavino et al., 2017).670

The Flory exponent profiles (Table 4) are depicted in Figure 5. The671

inset shows the νs values corresponding to the different mean good solvent672

molar fractions x̄s (discrete symbols), assuming the perfect mixing between673

the good and the bad solvent streams, already mentioned in the section 3.674

This perfect mixing condition corresponds to a single good solvent volume675

fraction value of 0.5 but different molar fractions, due to the different molar676

volumes of the good solvents. It is important to point out here that, from677

a qualitative point of view, the effect of the good solvent on the final mean678

NP size can be predicted looking at the Flory exponent evaluated at the679

mean good solvent molar fraction νs(x̄s). At the mean good solvent molar680

fraction x̄s, the inset shows the following relation for different good solvents:681
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νTHF(x̄THF) > νACN(x̄ACN) > νACT(x̄ACT) > νTBA(x̄TBA). This justifies,682

indeed, the fact that PCL aggregates more in THF than in acetonitrile, in683

acetone and finally in TBA at constant PCL inital concentration, in line684

with experiments (Ferri et al., 2017; Zelenková et al., 2015). Therefore,685

the approach described here is able to reproduce the experimental evidences686

highlighting the fundamental role played by the good solvent molar fraction.687

Note that the νs(x̄s) values are very close to each other, denoting the high688

sensitivity of the Flory exponent on final mean NP size.689

Figure 5: Flory exponent νs profiles in function of good solvent molar fraction for acetone
(red), acetonitrile (green), THF (blue) and TBA (purple) (Table 4). The discrete symbols
correspond to the Flory exponent at the outlet mean good solvent molar fraction νs(x̄s)
(inset).
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Figure 5 also depicts the affinity order found out in terms of HSP and690

solubility distance from PCL shown in Table 2, namely THF > ACT >691

TBA > ACN for which the solubility distances from PCL are respectively692

1.0, 6.5, 7.4 and 13.8 MPa1/2. Hence, at constant molar fraction, νs is di-693

rectly proportional to the good solvent affinity with PCL (in terms of sol-694

ubility distance). This implies that the polymer chain increases in size and695

assumes a more stretched conformation, according to the thermodynamics696

of real polymers in solution. However, operating at constant good-solvent-697

to-water ratio in volume leads to a mean good solvent molar fraction in the698

order: x̄ACN > x̄ACT > x̄THF > x̄TBA, because of the different molar volumes699

of the good solvents. This affects the Flory parameters and, consequently,700

aggregation, the final NP size and CMD.701

In Figure 6 the mean-squared radius of gyration of a NP is reported702

for acetone (red), acetonitrile (green), THF (blue) and TBA (purple) in703

function of the aggregation number. The crossover between the red and704

green profiles (acetone and acetonitrile) shows the two different tendencies705

and contributions in case of single PCL molecule (JRg(n = 1)K higher in706

acetone) and at high aggregation number, n, in which JRg(n)K is higher707

in acetonitrile than in acetone. This means that, despite the single PCL708

macromolecule occupies a smaller volume in acetonitrile, the PCL NP is709

bigger in acetonitrile, namely more PCL macromolecules form the same710

cluster (or NP) in acetonitrile (m(1)/m(0) is therefore greater than in ace-711

tone). Therefore, the Flory theory combined together with the solubility712

affinity with PCL implies the following order of the single PCL macro-713

molecule dimension: THF > ACT > ACN > TBA, as also indicated by714

37



the Sf values in Table 3. However, the combination of good solvent mo-715

lar volume (leading to different molar fractions) and the aggregation kernels716

(dependent on Flory parameters) produces the following aggregation order:717

THF > ACN > ACT > TBA.718

Figure 6: Mean squared radius of gyration, JRg
2K, as a function of the number of molecules

(Eq. (8)) that form a cluster (aggregation number, n) for acetone (red), acetonitrile (green),
THF (blue) and TBA (purple) at the respective outlet mean good solvent molar fraction
x̄s.

5. Conclusions719

In this work the effect of different good solvents in flash nano-precipitation720

(FNP) is studied, from a modeling point of view. A population balance model721

(PBM) based on molecules as building blocks is coupled with computational722
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fluid dynamics (CFD) and implemented in a commercial CFD code. Mo-723

ments of the cluster mass distribution (CMD) are transported and closed724

by using the quadrature method of moments (QMOM) (Marchisio and Fox,725

2013). The CMD is defined in such a way that it represents the number of726

polymer molecules inside a cluster/NP. The turbulent mixing effects on NP727

formation are accounted for with the direct quadrature method of moments728

coupled with the interaction and exchange with the mean (DQMOM-IEM)729

method, in line with our reference work, in which this modeling approach730

was tested and validated (Lavino et al., 2017).731

The novelty of the current approach consists in coupling PBM and CFD732

with thermodynamics of polymers in solution. More specifically, the Flory-733

Huggins interaction parameter χ is considered, taking into account therefore734

the energetic contribution related to the polymer in the mixture, and is here735

correlated to the prediction of the mean radius of gyration of the NP. All this736

is done by taking advantage of the solubility theory in mixtures, in terms of737

Hansen solubility parameters (HSP). In this way, different good solvents are738

studied, with water as anti-solvent and poly-ε-caprolactone (PCL) as solute,739

in confined impinging jets mixer (CIJM). Four different good solvents are740

considered: acetone (ACT), acetonitrile (ACN), tetrahydrofuran (THF) and741

tert-butanol (TBA), taking the acetone as the reference solvent, being this742

one already investigated at the molecular scale with molecular dynamics in743

a previous work (Di Pasquale et al., 2014).744

Thanks to the proposed approach, kinetics and thermodynamics are in-745

tertwined in a unique modeling tool used to investigate separately the dy-746

namics of mixing from the dynamics of aggregation, addressing the main747
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factors that play a key role in such a complex process. CFD simulations748

demonstrate that acetone, acetonitrile and THF are characterized by the749

same macro- and micro-mixing dynamics, whereas TBA shows a different750

micro-mixing behaviour, strongly dependent on its viscosity, that is one or-751

der of magnitude higher than the other solvents and water. Results also show752

that the molar volume, combined together with the HSP, provides a good753

prediction of the final mean NP size when different good solvents are em-754

ployed in FNP. Furthermore, functional forms for the Flory parameters are755

determined, by combining the Flory-Huggins solubility theory with a suitable756

computational tuning. In this way, it is shown that the proposed modeling757

approach is transferable and adaptable to different scenarios, leading to a758

good prediction of the experimental results from quantitative and qualita-759

tive points of view. This is valid also in the case of TBA which presents a760

different mixing dynamics that, in turn, affects the final NP profile in func-761

tion of the inlet Reynolds number. The detected limitations, in terms of762

accordance with experiments, might be overcome by introducing nucleative763

effects in the aggregation source term of the PBM. In conclusion, although764

the phenomena involved are very complex and this is not indeed the ultimate765

model for FNP, this model is able to capture the main effects experimentally766

observed since both kinetics and thermodynamics are considered.767

Future work may be done by investigating these good solvent-water sys-768

tems at the molecular scale with full-atom and coarse-grained molecular dy-769

namics simulations, aiming at confirming or refining the results obtained in770

this work, with more detailed molecular models.771
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Appendix772

Appendix A. Mixing modeling and micro-mixing variance773

In this appendix, further mathematical details concerning the mixing774

modeling are provided. More specifically, it will be shown how the micro-775

mixing variance can be related to the mixing transport equation, in particular776

to one of its terms: the micro-mixing term. In this modeling framework, as777

reported in the main text, the mixture fraction is transported by means of778

the direct quadrature method of moment coupled with the interaction and779

exchange with the mean method (DQMOM-IEM) (Marchisio and Fox, 2013).780

Besides the micro-mixing model introduced in the main text in section781

2.1, a large-scale or macro-scale variance 〈ξ′2〉macro is defined as follows:782

〈ξ′2〉macro = (〈ξ〉 − ξ̄)2, (A.1)

quantifying how different the local mean mixture fraction 〈ξ〉 is from the ideal783

value ξ̄ that it would assume if the mixing were perfect. In the analyzed case,784

for instance, ξ̄v = 0.5 in volume. For the analyzed cases, this tells us that785

the macro-mixing is very efficient, leading the macro-mixing variance to zero786

in almost all the CIJM, as shown in Figure 1.787

The micro-mixing variance is defined as (Liu and Fox, 2006):788

〈ξ′2〉 = 〈ξ2〉 − 〈ξ〉2. (A.2)

We can rearrange the last expression as follows:789
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〈ξ′2〉 = 〈ξ2〉 − 〈ξ〉2 = p1ξ
2
1 + p2ξ

2
2 − (p1ξ1 + p2ξ2)

2 =

= p1ξ
2
1(1− p1) + p2ξ

2
2(1− p2)− 2p1p2ξ1ξ2 =

= p1p2(ξ
2
1 + ξ22 − 2ξ1ξ2) = p1p2(ξ2 − ξ1)2, (A.3)

where the property p1 = 1 − p2 is applied. By using the results shown in790

Eq. (A.3), the first term on right hand side of Eq. (5) that contains the micro-791

mixing rate can be expressed as follows (the fluid density ρ̄ is here omitted792

for simplicity of notation):793

γMp1p2 (ξ2 − ξ1) =
γM

(ξ2 − ξ1)
〈ξ′2〉, (A.4)

strictly dependent on the micro-mixing variance 〈ξ′2〉. The quantity ex-794

pressed in Eq. (A.4) is the one reported in the contour plots in Figure 1795

and can be thought of as a measure of how the micro-mixing variance is dis-796

sipated by turbulence (included in the definition of γM) at the micro-scale.797
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générales. Journal de Mecanique 4, 361–390.853

Ferri, A., Kumari, N., Peila, R., Barresi, A.A., 2017. Production of menthol-854

loaded nanoparticles by solvent displacement. The Canadian Journal of855

Chemical Engineering 95, 1690–1706. doi:https://doi.org/10.1002/856

cjce.22867.857

Flory, P., 1953. Principles of Polymer Chemistry. Ithaca: Cornell University858

Press.859

Fox, R.O., 2003. Computational Models for Turbulent Reacting Flows. Cam-860

bridge: Cambridge University Press. doi:10.1017/CBO9780511610103.861

Gartner, T.E., Jayaraman, A., 2018. Macromolecular ‘size’ and ‘hard-862

ness’ drives structure in solvent-swollen blends of linear, cyclic, and star863

polymers. Soft Matter 14, 411–423. doi:https://doi.org/10.1039/864

C7SM02199B.865

45

http://dx.doi.org/https://doi.org/10.1021/jp505348t
http://dx.doi.org/https://doi.org/10.1021/jp505348t
http://dx.doi.org/https://doi.org/10.1021/jp505348t
http://dx.doi.org/https://doi.org/10.1002/cjce.22867
http://dx.doi.org/https://doi.org/10.1002/cjce.22867
http://dx.doi.org/https://doi.org/10.1002/cjce.22867
http://dx.doi.org/10.1017/CBO9780511610103
http://dx.doi.org/https://doi.org/10.1039/C7SM02199B
http://dx.doi.org/https://doi.org/10.1039/C7SM02199B
http://dx.doi.org/https://doi.org/10.1039/C7SM02199B


Gavi, E., Marchisio, D.L., Barresi, A.A., 2007. Cfd modelling and scale-866

up of confined impinging jet reactors. Chemical Engineering Science 62,867

2228–2241. doi:https://doi.org/10.1016/j.ces.2006.12.077.868

Gradl, J., Schwarzer, H.C., Schwertfirm, F., Manhart, M., Peukert, W., 2006.869

Precipitation of nanoparticles in a t-mixer: coupling the particle popula-870

tion dynamics with hydrodynamics through direct numerical simulation.871

Chemical Engineering and Processing: Process Intensification 45, 908–916.872

doi:https://doi.org/10.1016/j.cep.2005.11.012.873

Hans, M.L., Lowman, A.M., 2002. Biodegradable nanoparticles for drug de-874

livery and targeting. Current Opinion in Solid State and Materials Science875

6, 319–327. doi:https://doi.org/10.1016/S1359-0286(02)00117-1.876

Hansen, C.M., 2007. Hansen Solubility Parameters: A User’s Handbook (2nd877

edition). Boca Raton: CRC Press.878

Hildebrand, J., Scott, R.L., 1950. Solubility of Nonelectrolytes (3rd edition).879

New York: Reinhold.880

Johnson, B.K., Prud’homme, R.K., 2003a. Chemical processing and micro-881

mixing in confined impinging jets. AIChE Journal 49, 2264–2282.882

doi:https://doi.org/10.1002/aic.690490905.883

Johnson, B.K., Prud’homme, R.K., 2003b. Flash nano-precipitation of or-884

ganic actives and block copolymers using a confined impinging jets mixer.885

Australian Journal of Chemistry 56, 1021–1024. doi:https://doi.org/886

10.1071/CH03115.887

46

http://dx.doi.org/https://doi.org/10.1016/j.ces.2006.12.077
http://dx.doi.org/https://doi.org/10.1016/j.cep.2005.11.012
http://dx.doi.org/https://doi.org/10.1016/S1359-0286(02)00117-1
http://dx.doi.org/https://doi.org/10.1002/aic.690490905
http://dx.doi.org/https://doi.org/10.1071/CH03115
http://dx.doi.org/https://doi.org/10.1071/CH03115
http://dx.doi.org/https://doi.org/10.1071/CH03115


Lavino, A.D., Banetta, L., Carbone, P., Marchisio, D.L., 2018. Ex-888

tended charge-on-particle optimized potentials for liquid simulation ace-889

tone model: The case of acetone–water mixtures. The Journal of Physical890

Chemistry B 122, 5234–5241. doi:https://doi.org/10.1021/acs.jpcb.891

8b01293.892

Lavino, A.D., Carbone, P., Marchisio, D.L., 2020. Martini coarse-grained893

model for poly-ε-caprolactone in acetone-water mixtures. The Canadian894

Journal of Chemical Engineering 98, 1868–1879. doi:https://doi.org/895

10.1002/cjce.23761.896

Lavino, A.D., Di Pasquale, N., Carbone, P., Barresi, A.A., Marchisio, D.L.,897

2015. Simulation of macromolecule self-assembly in solution: A multiscale898

approach. AIP Conference Proceedings 1695, 020036. doi:https://doi.899

org/10.1063/1.4937314.900

Lavino, A.D., Di Pasquale, N., Carbone, P., Marchisio, D.L., 2017. A novel901

multiscale model for the simulation of polymer flash nano-precipitation.902

Chemical Engineering Science 171, 485–494. doi:https://doi.org/10.903

1016/j.ces.2017.04.047.904

Lavino, A.D., Marchisio, D.L., Vanni, M., Ferri, A., Barresi, A.A., 2019.905

Nanoparticles production in continuous flow devices - modelling and ex-906

perimental insights into continuous flow-based processes. Chimica Oggi -907

Chemistry Today 37, 8–11.908

Le Roy Boehm, A.L., Zerrouk, R., Fessi, H., 2000. Poly epsilon-caprolactone909

nanoparticles containing a poorly soluble pesticide: formulation and sta-910

47

http://dx.doi.org/https://doi.org/10.1021/acs.jpcb.8b01293
http://dx.doi.org/https://doi.org/10.1021/acs.jpcb.8b01293
http://dx.doi.org/https://doi.org/10.1021/acs.jpcb.8b01293
http://dx.doi.org/https://doi.org/10.1002/cjce.23761
http://dx.doi.org/https://doi.org/10.1002/cjce.23761
http://dx.doi.org/https://doi.org/10.1002/cjce.23761
http://dx.doi.org/https://doi.org/10.1063/1.4937314
http://dx.doi.org/https://doi.org/10.1063/1.4937314
http://dx.doi.org/https://doi.org/10.1063/1.4937314
http://dx.doi.org/https://doi.org/10.1016/j.ces.2017.04.047
http://dx.doi.org/https://doi.org/10.1016/j.ces.2017.04.047
http://dx.doi.org/https://doi.org/10.1016/j.ces.2017.04.047


bility study. Journal of Microencapsulation 17, 195–205. doi:https:911

//doi.org/10.1080/026520400288436.912

Lince, F., Marchisio, D.L., Barresi, A.A., 2008. Strategies to control the par-913

ticle size distribution of poly-ε-caprolactone nanoparticles for pharmaceu-914

tical applications. Journal of Colloid and Interface Science 322, 505–515.915

doi:https://doi.org/10.1016/j.jcis.2008.03.033.916

Lince, F., Marchisio, D.L., Barresi, A.A., 2009. Smart mixers and reac-917

tors for the production of pharmaceutical nanoparticles: Proof of con-918

cept. Chemical Engineering Research and Design 87, 543–549. doi:https:919

//doi.org/10.1016/j.cherd.2008.11.009.920

Lince, F., Marchisio, D.L., Barresi, A.A., 2011. A comparative study for921

nanoparticle production with passive mixers via solvent-displacement: Use922

of cfd models for optimization and design. Chemical Engineering and923

Processing: Process Intensification 50, 356–368. doi:https://doi.org/924

10.1016/j.cep.2011.02.015.925

Liu, Y., Cheng, C., Prud’homme, R.K., Fox, R.O., 2008. Mixing in a multi-926

inlet vortex mixer (mivm) for flash nano-precipitation. Chemical Engineer-927

ing Science 63, 2829–2842. doi:https://doi.org/10.1016/j.ces.2007.928

10.020.929

Liu, Y., Fox, R.O., 2006. Cfd predictions for chemical processing in a confined930

impinging-jets reactor. AIChE Journal 52, 731–744. doi:https://doi.931

org/10.1002/aic.10633.932

48

http://dx.doi.org/https://doi.org/10.1080/026520400288436
http://dx.doi.org/https://doi.org/10.1080/026520400288436
http://dx.doi.org/https://doi.org/10.1080/026520400288436
http://dx.doi.org/https://doi.org/10.1016/j.jcis.2008.03.033
http://dx.doi.org/https://doi.org/10.1016/j.cherd.2008.11.009
http://dx.doi.org/https://doi.org/10.1016/j.cherd.2008.11.009
http://dx.doi.org/https://doi.org/10.1016/j.cherd.2008.11.009
http://dx.doi.org/https://doi.org/10.1016/j.cep.2011.02.015
http://dx.doi.org/https://doi.org/10.1016/j.cep.2011.02.015
http://dx.doi.org/https://doi.org/10.1016/j.cep.2011.02.015
http://dx.doi.org/https://doi.org/10.1016/j.ces.2007.10.020
http://dx.doi.org/https://doi.org/10.1016/j.ces.2007.10.020
http://dx.doi.org/https://doi.org/10.1016/j.ces.2007.10.020
http://dx.doi.org/https://doi.org/10.1002/aic.10633
http://dx.doi.org/https://doi.org/10.1002/aic.10633
http://dx.doi.org/https://doi.org/10.1002/aic.10633


Marchisio, D.L., Fox, R.O., 2005. Solution of population balance equations933

using the direct quadrature method of moments. Journal of Aerosol Science934

36, 43–73. doi:https://doi.org/10.1016/j.jaerosci.2004.07.009.935

Marchisio, D.L., Fox, R.O., 2013. Computational Models for Polydisperse936

Particulate and Multiphase Flows. Cambridge: Cambridge University937

Press.938

Marchisio, D.L., Omegna, F., Barresi, A.A., 2009. Production of tio2939

nanoparticles with controlled characteristics by means of a vortex reac-940

tor. Chemical Engineering Journal 146, 456–465. doi:https://doi.org/941

10.1016/j.cej.2008.10.031.942

Marchisio, D.L., Omegna, F., Barresi, A.A., Bowen, P., 2008. Effect of943

mixing and other operating parameters in sol-gel processes. Industrial &944

Engineering Chemistry Research 47, 7202–7210. doi:https://doi.org/945

10.1021/ie800217b.946

Martin, T.B., Jayaraman, A., 2016. Using theory and simulations to calcu-947

late effective interactions in polymer nanocomposites with polymer-grafted948

nanoparticles. Macromolecules 49, 9684–9692. doi:https://doi.org/10.949

1021/acs.macromol.6b01920.950

Massella, D., Celasco, E., Salaün, F., Ferri, A., Barresi, A.A., 2018. Overcom-951

ing the limits of flash nanoprecipitation: effective loading of hydrophilic952

drug into polymeric nanoparticles with controlled structure. Polymers 10,953

1092. doi:https://doi.org/10.3390/polym10101092.954

49

http://dx.doi.org/https://doi.org/10.1016/j.jaerosci.2004.07.009
http://dx.doi.org/https://doi.org/10.1016/j.cej.2008.10.031
http://dx.doi.org/https://doi.org/10.1016/j.cej.2008.10.031
http://dx.doi.org/https://doi.org/10.1016/j.cej.2008.10.031
http://dx.doi.org/https://doi.org/10.1021/ie800217b
http://dx.doi.org/https://doi.org/10.1021/ie800217b
http://dx.doi.org/https://doi.org/10.1021/ie800217b
http://dx.doi.org/https://doi.org/10.1021/acs.macromol.6b01920
http://dx.doi.org/https://doi.org/10.1021/acs.macromol.6b01920
http://dx.doi.org/https://doi.org/10.1021/acs.macromol.6b01920
http://dx.doi.org/https://doi.org/10.3390/polym10101092


Nelson, G., 2002. Application of microencapsulation in textiles. International955

Journal of Pharmaceutics 242, 55–62. doi:https://doi.org/10.1016/956

S0378-5173(02)00141-2.957

Petitti, M., Vanni, M., Barresi, A.A., 2008. Controlled release of drug en-958

capsulated as a solid core: Theoretical model and sensitivity analysis.959

Chemical Engineering Research and Design 86, 1294–1300. doi:https:960

//doi.org/10.1016/j.cherd.2008.05.008.961

Prasad, R., Kumar, V., Prasad, K.S., 2014. Nanotechnology in sustain-962

able agriculture: Present concerns and future aspects. African Journal963

of Biotechnology 13, 705–713. doi:https://doi.org/10.5897/AJBX2013.964

13554.965

Rubinstein, M., Colby, R.H., 2003. Polymer Physics. Oxford: Oxford Uni-966

versity Press.967

Saad, W.S., 2007. Drug nanoparticle formation via flash nanoprecipitation:968

Conjugation to encapsulate and control the release of paclitaxel. Ph.D.969

thesis. Princeton University.970

Saad, W.S., Prud’homme, R.K., 2016. Principles of nanoparticle formation971

by flash nanoprecipitation. Nano Today 11, 212–227. doi:https://doi.972

org/10.1016/j.nantod.2016.04.006.973

Valente, I., Celasco, E., Marchisio, D.L., Barresi, A.A., 2012a. Nanopre-974

cipitation in confined impinging jets mixers: Production, characteriza-975

tion and scale-up of pegylated nanospheres and nanocapsules for phar-976

50

http://dx.doi.org/https://doi.org/10.1016/S0378-5173(02)00141-2
http://dx.doi.org/https://doi.org/10.1016/S0378-5173(02)00141-2
http://dx.doi.org/https://doi.org/10.1016/S0378-5173(02)00141-2
http://dx.doi.org/https://doi.org/10.1016/j.cherd.2008.05.008
http://dx.doi.org/https://doi.org/10.1016/j.cherd.2008.05.008
http://dx.doi.org/https://doi.org/10.1016/j.cherd.2008.05.008
http://dx.doi.org/https://doi.org/10.5897/AJBX2013.13554
http://dx.doi.org/https://doi.org/10.5897/AJBX2013.13554
http://dx.doi.org/https://doi.org/10.5897/AJBX2013.13554
http://dx.doi.org/https://doi.org/10.1016/j.nantod.2016.04.006
http://dx.doi.org/https://doi.org/10.1016/j.nantod.2016.04.006
http://dx.doi.org/https://doi.org/10.1016/j.nantod.2016.04.006


maceutical use. Chemical Engineering Science 77, 217–227. doi:https:977

//doi.org/10.1016/j.ces.2012.02.050.978

Valente, I., Stella, B., Marchisio, D.L., Dosio, F., Barresi, A.A., 2012b. Pro-979

duction of pegylated nanocapsules through solvent-displacement in con-980

fined impinging jets mixers. Journal of Pharmaceutical Sciences 101, 2490–981

2501. doi:https://doi.org/10.1002/jps.23167.982

Who, C., Jim, T., Gan, Z., Zhao, Y., Wang, S., 2000. A heterogeneous983

catalytic kinetics for enzymatic biodegradation of poly(ε-caprolactone)984

nanoparticles in aqueous solution. Polymer 41, 3593–3597. doi:https:985

//doi.org/10.1016/S0032-3861(99)00586-8.986

Wu, X., Guy, R.H., 2009. Applications of nanoparticles in topical drug987

delivery and in cosmetics. Journal of Drug Delivery Science and Technology988

19, 371–384. doi:https://doi.org/10.1016/S1773-2247(09)50080-9.989
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