7 research outputs found

    Stereoelectronic Model To Explain Highly Stereoselective Reactions of Seven-Membered-Ring Oxocarbenium-Ion Intermediates

    Get PDF
    Nucleophilic attack on seven-membered-ring oxocarbenium ions is generally highly stereoselective. The preferred mode of nucleophilic attack forms the product in a conformation that minimizes transannular interactions, thus leading to different stereoselectivity as compared to that of reactions involving six-membered-ring oxocarbenium ions

    Highly stereoselective decarboxylation of (+)-1-Bromo-1-chloro-2,2,2-trifluoropropanoic acid gives (+)-1-Bromo-1-chloro-2,2,2-trifluoroethane ((+)-Halothane) with retention of configuration

    Get PDF
    The absolute configuration of the title acid (2) has been determined to be S by X-ray crystallography. Thus, decarboxylation of 2 produces (S)-(+)-halothane with 99% retention of configuration. This behavior is compared to other stereoselective decarboxylation reactions of ?-haloacids from the literature that also give high degrees of retention of configuration when in the form of their quaternary ammonium salts, which contain one proton. The proton of the ammonium salt is necessary to protonate the anionic intermediate formed from decarboxylation. In the absence of this relatively acidic proton, we had previously found that using triethylene glycol (TEG) as both solvent and proton source for the decarboxylation reaction of acid 2 caused poor stereoselectivity. This was in contrast to 1,2,2,2-tetrafluoro-1-methoxypropionic acid (6), which showed a high degree of retention of configuration in TEG. To rationalize this differing behavior we report DFT studies at PCM-B3LYP/6-31++G** level of theory (the results were additionally confirmed with 6-311++G** and aug-cc-pVDZ basis sets). The energy barrier to inversion of configuration of the anionic reaction intermediate of acid 2 (11) is 10.23 kcal/mol. However, we find that the anionic intermediate from acid 6 (10) would rather undergo ?-elimination instead of inversion of configuration. Thus the planar transition state required for inversion of configuration is never reached, regardless of the rate of proton transfer to the anion

    Thermochromicity in Wool Dyed with 6-Bromoindigo Depends on the Presence and Identity of a Solvent

    No full text
    The thermochromic effect of wool dyed with 6-bromoindigo was found to depend on both heat and a solvent. The dyed fabric must be immersed in a solvent while heating for a color change from purple to blue to occur. Ethanol was the most effective solvent in causing the color change. Water was effective as well. 1-Butanol caused a slight color change, while toluene was completely ineffective. These results are interpreted as interaction of the solvent with both the wool surface and adsorbed dye molecular aggregates, causing changes in the size of large red aggregates to smaller blue ones. The mildest conditions for the color change, immersion in water at 60 °C, are so easily obtained that it is possible that ancient dyers knew of this as a finishing process for their dyeing, or knew to avoid post-dyeing heat treatment

    Triazolo[4,5-d]pyrimidines as Validated General Control Nonderepressible 2 (GCN2) Protein Kinase Inhibitors Reduce Growth of Leukemia Cells

    No full text
    Cellular stress signals activate adaptive signaling pathways of the mammalian integrated stress response (ISR), of which the unfolded protein response (UPR) is a subset. These pathways converge at the phosporylation of eIF2α. Drug-like, potent and selective chemical inhibitors (valid chemical probes) targeting major ISR kinases have been previously identified, with the exception of GCN2. We synthesized and evaluated a series of GCN2 inhibitors based on a triazolo[4,5-d]pyrimidine scaffold. Several compounds potently inhibited GCN2 in vitro and displayed good selectivity over the related kinases PERK, HRI, and IRE1. The compounds inhibited phosporylation of eIF2α in HEK293T cells with an IC50 < 150 nM, validating them as chemical probes for cellular studies. These probes were screened against the National Cancer Institute NCI-60 human cancer cell line panel. Uniform growth inhibition was observed in the leukemia group of cell lines. Growth inhibition in the most sensitive cell lines coincided with high GCN2 mRNA expression levels. Oncomine analysis revealed high GCN2 expression accompanied by lower asparagine synthetase (ASNS) expression in patient-derived acute lymphoblastic leukemias with B-Cell origins (B-ALL) as well. Notably, asparaginase, which depletes amino acids and triggers GCN2 activity, is a licensed, first-line B-ALL treatment. Thus, we hypothesize that leukemias exhibiting high GCN2 expression and low ASNS expression may be susceptible to pharmacologic GCN2 inhibition
    corecore