Highly Stereoselective Decarboxylation of (+)-1-Bromo-1-chloro-2,2,2trifluoropropanoic Acid gives (+)-1-Bromo-1-chloro-2,2,2-trifluoroethane ((+)Halothane) with Retention of Configuration

Olga Lavinda, David J. Szalda, Keith Ramig*

Department of Natural Sciences, Baruch College, the City University of New York, 17
Lexington Ave., New York, New York 10010

Supporting Information

Table of Contents

Nr. Title Page

1. Computational Methodology S3
2. References for Computational Methodology S4
3. Cartesian coordinates, number of imaginary frequencies and S6energies for the structures involved in the inversion of anion10 at PCM-B3LYP/6-31++G**
4. Cartesian coordinates, number of imaginary frequencies and S8energies for the structures involved in the inversion of anion11 at PCM-B3LYP/6-31++G**
5. Enthalpies of activation for anions $\mathbf{1 0}$ and $\mathbf{1 1}$ at PCM- S10B3LYP/6-31++G**, PCM-B3LYP/6-311++G** and PCM-B3LYP/aug-cc-pVDZ including Temperature parameter.

1. Computational Methodology

In this study, calculations were carried out using B3LYP ${ }^{1}$ hybrid functional in Gaussian 09^{2} software package using $6-31++\mathrm{G}^{* *}$ basis set. Results were confirmed with $6-311++\mathrm{G}^{* *}$ and aug-cc-pVDZ basis sets. Pople's ${ }^{3} 6-31++\mathrm{G}^{* *}$ and $6-311++\mathrm{G}^{* *}$ basis sets have been shown to well reproduce experimental geometries in a range of molecules. ${ }^{4}$ Due to the presence of two sets of diffuse valence basis atomic orbitals, they satisfy the requirement for calculating anions, which calls for a use of more diffuse functions, as well as high computational efficiency. ${ }^{5}$ For comparison, the results were confirmed using Dunning's ${ }^{6}$ aug-cc-pVDZ that was shown to overestimate the bond lengths and energies, ${ }^{4}$ but has been chosen for its consistency in anionic systems.

All stationary points were characterized as being either minima or maxima by harmonic frequency analysis. All first-order saddle points had one imaginary frequency and the local minima had zero negative frequencies. The reaction pathways were confirmed by the internal reaction coordinate (IRC) ${ }^{7}$ analysis. Reported enthalpies include unscaled zero-point energy (ZPE) corrections that were calculated with the same method and basis set. Structures reported in the manuscript were visualized using GaussView ${ }^{8}$ software.

In attempt to reproduce experimental reactions carried out in this work, we used Polarizable Continuum Model (PCM) ${ }^{9}$ for introducing solvents. In the case of the DMPU/TEG mixture, solvent mixture was specified by using generic command alongside with PCMDoc followed by the experimental parameters, which were combined assuming linearity. ${ }^{10}$ Additionally, we included a temperature parameter in accordance with the experiment.

There exist multiple rotamers of anion $\mathbf{1 0}$ which differ by the position of the OMe group relative to the lone pair. In our theoretical study we considered two major conformers 10A and 10B (Fig S1) in which the position of the OMe group differs by approximately 180°. Analysis determined that $\mathbf{1 0 A}$ conformer is more stable than $\mathbf{1 0 B}$ by $3.8 \mathrm{kcal} / \mathrm{mol}$, which is in agreement with findings of Polavarapu et al. ${ }^{11}$ who used vibrational circular dichroism for studies of 1,2,2,2,-tetrafluoroethyl methyl ether 7. They determined that trans-conformer corresponding to conformation of $\mathbf{1 0 A}$ is dominant by 78%, while the g-conformer, is less stable and is present at 22% at B3LYP/6-31G* level of theory.

Figure S1. Conformers of $\mathbf{2}^{11}$ and anion $\mathbf{1 0}$.

trans

g -

10A aka trans

10B aka g -

2. References for Computational Methodology

1. (a) Becke, A. D. J. Chem. Phys. 1993, 98, 1372-1377. (b) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652. (c) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789. (d) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623-11627.
2. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G.,

Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. (2009) Gaussian, Inc., Wallingford CT.
3. Hehre, W. J.; Random, L.; Schleyer, P. v. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986.
4. Wiberg, K. B. J. Comput. Chem. 2003, 25, 1342-1346.
5. Simmons, J. J. Phys. Chem. A 2008, 112, 6401-6511.
6. Dunning, T. H., Jr. J Chem Phys 1989, 90, 1007.
7. (a) Fukui, K. Acc. Chem Res. 1981, 14, 363-368 (b) Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523-5527.
8. GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J. Semichem Inc., Shawnee Mission KS, 2009.
9. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev., 2005, 105, 2999-3093.
10. Fox, J.; Scalmani, G. Gaussian, Inc, private communication, 2011.
11. Polavarapu, P. L.; Zhao, C.; Ramig, K. Tetrahedron: Asymmetry 1999, 10, 10991106.

3. Cartesian coordinates, number of imaginary frequencies and energies for the

 structures involved in the inversion of anion 10 at PCM-B3LYP/6-31++G**
Reactant 10

0 imaginary frequencies
Zero-point correction $=\quad 0.061651$ (Hartree/Particle)
Thermal correction to Energy $=\quad 0.079033$
Thermal correction to Enthalpy $=\quad 0.080531$
Thermal correction to Gibbs Free Energy= 0.001318
Sum of electronic and zero-point Energies= -590.762612
Sum of electronic and thermal Energies $=\quad-590.745231$
Sum of electronic and thermal Enthalpies $=\quad-590.743732$
Sum of electronic and thermal Free Energies $=\quad-590.822945$
-1 1

C	0.47053500	0.31816300	-0.48326100
O	1.36956700	-0.32876000	0.37367200
C	2.69065700	-0.44731900	-0.15160700
H	3.16008800	0.53703700	-0.26784100
H	3.26746800	-1.03625600	0.56734200
H	2.67838800	-0.95562300	-1.12296700
C	-0.88791000	-0.17306500	-0.06366700
F	-1.05729900	-1.48933700	-0.39719000
F	-1.89426200	0.51454600	-0.68171400
F	-1.21425900	-0.11367800	1.28850400
F	0.42113400	1.74383100	0.01543300

Transition State 10 - $\boldsymbol{\beta}$-elimination (Displacement vectors show direction of atom movement during elimination)
-1 1

C	0.48574000	0.35301600	-0.20944300
F	-1.66377200	-0.22483400	1.33909300
F	-1.75220300	0.59293600	-0.84359400
F	-0.95957300	-1.44600300	-0.53116500
F	0.53328400	1.74832000	0.06572900
O	1.42458300	-0.32460400	0.51943300
C	2.68486800	-0.50411100	-0.15013100
H	3.15500200	0.46278000	-0.35903700
H	3.31901200	-1.07793700	0.52925800
H	2.54441800	-1.05452100	-1.08642900
C	-0.80972900	-0.14344700	-0.22539600

4. Cartesian coordinates, number of imaginary frequencies and energies for the structures involved in the inversion of anion 11 at PCM-B3LYP/6-31++G**

Reactant 11

0 imaginary frequencies

Zero-point correction $=$	0.018647 (Hartree/Particle)
Thermal correction to Energy $=$	0.028576
Thermal correction to Enthalpy $=$	0.029735
Thermal correction to Gibbs Free Energy $=$	-0.024691
Sum of electronic and zero-point Energies $=$	-3407.760724
Sum of electronic and thermal Energies $=$	-3407.750795
Sum of electronic and thermal Enthalpies=	-3407.749636
Sum of electronic and thermal Free Energies=	-3407.804062

-1 1

C	-0.14916900	0.34727100	-0.70214700
Cl	-0.43009800	2.03573600	0.01542000
Br	1.64029100	-0.27960400	0.00727800
C	-1.17023600	-0.54295800	-0.05068300
F	-1.24831700	-0.60972100	1.33417300
F	-1.00642500	-1.83783800	-0.45009900
F	-2.43215400	-0.17991600	-0.43961700

$\mathbf{3 0}^{\mathbf{0}}$ Rotamer of Anion 11
(Displacement vectors show direction of atom movement during rotation of $\mathbf{C F}_{3}$)

0 imaginary frequencies

Zero-point correction=
Thermal correction to Energy=
Thermal correction to Enthalpy=
Thermal correction to Gibbs Free Energy $=\quad-0.033827$
Sum of electronic and zero-point Energies= $=3407.754169$
Sum of electronic and thermal Energies $=\quad-3407.742101$
Sum of electronic and thermal Enthalpies $=\quad-3407.740793$
Sum of electronic and thermal Free Energies $=\quad-3407.806458$
-1 1

C	-0.12908300	0.35813000	-0.62868500
Cl	-0.38261000	2.05116100	0.01791700
Br	1.65899500	-0.30654100	0.00520900
C	-1.19844800	-0.52849500	-0.05897900
F	-0.81305200	-1.82741100	0.06118700
F	-2.31564100	-0.51853100	-0.86015400
F	-1.71522700	-0.22279500	1.20330700

Transition State - inversion of asymmetric carbon in anion 11 (Displacement vectors show direction of atom movement during inversion)

1 imaginary frequency

Zero-point correction $=$	0.017755 (Hartree/Particle)
Thermal correction to Energy $=$	0.027240
Thermal correction to Enthalpy $=$	0.028399
Thermal correction to Gibbs Free Energy=	-0.025456
Sum of electronic and zero-point Energies $=$	-3407.743089
Sum of electronic and thermal Energies $=$	-3407.733605
Sum of electronic and thermal Enthalpies=	-3407.732446
Sum of electronic and thermal Free Energies $=$	-3407.786301

-1 1

Cl	0.27481000	2.07284700	0.00003200
C	0.06940400	0.32187900	0.00043800
Br	-1.70193300	-0.35262600	0.00001500
C	1.20674100	-0.48797600	-0.00006000
F	2.15271800	-0.30416300	-1.08604500
F	2.15291000	-0.30527400	1.08625300
F	0.94315200	-1.82388700	-0.00057700

5. Enthalpies of activation for anions 10 and 11 at PCM-B3LYP/6-31++G**, PCM-B3LYP/6-311++G** and PCM-B3LYP/aug-cc-pVDZ including Temperature parameter.

	B3LYP $/ \mathbf{6 - 3 1 + + \mathbf { G } ^ { * * }}$	B3LYP/6-311++G**	B3LYP/aug-cc-pVDZ
$\mathbf{1 0} \Delta \mathbf{H}^{\neq \text {elimination }}$	$6.35 \mathrm{kcal} / \mathrm{mol}$	$5.29 \mathrm{kcal} / \mathrm{mol}$	$6.24 \mathrm{kcal} / \mathrm{mol}$
$\mathbf{1 1} \Delta \mathbf{H}^{\neq}{ }_{\text {inversion }}$	$10.23 \mathrm{kcal} / \mathrm{mol}$	$10.01 \mathrm{kcal} / \mathrm{mol}$	$11.24 \mathrm{kcal} / \mathrm{mol}$

