6 research outputs found

    Directing HIV-1 for degradation by non-target cells, using bi-specific single-chain llama antibodies

    Get PDF
    While vaccination against HIV-1 has been so far unsuccessful, recently broadly neutralizing antibodies (bNAbs) against HIV-1 envelope glycoprotein were shown to induce long-term suppression in the absence of antiretroviral therapy in patients with antibody-sensitive viral reservoirs. The requirement of neutralizing antibodies indicates that the antibody mediated removal (clearance) of HIV-1 in itself is not efficient enough in these immune compromised patients. Here we present a novel, alternative approach that is independent of a functional immune system to clear HIV-1, by capturing the virus and redirecting it to non-target cells where it is internalized and degraded. We use bispecific antibodies with domains derived from small single chain Llama antibodies (VHHs). These bind with one domain to HIV-1 envelope proteins and with the other domain direct the virus to cells expressing epidermal growth factor receptor (EGFR), a receptor that is ubiquitously expressed in the body. We show that HIV envelope proteins, virus-like particles and HIV-1 viruses (representing HIV-1 subtypes A, B and C) are efficiently recruited to EGFR, internalized and degraded in the lysosomal pathway at low nM concentrations of bispecific VHHs. This directed degradation in non-target cells may provide a clearance platform for the removal of viruses and other unwanted agents from the circulation, including toxins, and may thus provide a novel method for curing

    Posttranscriptional Regulation of HIV-1 Gene Expression during Replication and Reactivation from Latency by Nuclear Matrix Protein MATR3.

    Get PDF
    Posttranscriptional regulation of HIV-1 replication is finely controlled by viral and host factors. Among the former, Rev controls the export of partially spliced and unspliced viral RNAs from the nucleus and their translation in the cytoplasm or incorporation into new virions as genomic viral RNA. To investigate the functional role of the Rev cofactor MATR3 in the context of HIV infection, we modulated its expression in Jurkat cells and primary peripheral blood lymphocytes (PBLs). We confirmed that MATR3 is a positive regulator of HIV-1 acting at a posttranscriptional level. By applying the same approach to J-lat cells, a well-established model for the study of HIV-1 latency, we observed that MATR3 depletion did not affect transcriptional reactivation of the integrated provirus, but caused a reduction of Gag production. Following these observations, we hypothesized that MATR3 could be involved in the establishment of HIV-1 posttranscriptional latency. Indeed, mechanisms acting at the posttranscriptional level have been greatly overlooked in favor of transcriptional pathways. MATR3 was almost undetectable in resting PBLs, but could be promptly upregulated upon cellular stimulation with PHA. However, HIV latency-reversing agents were poor inducers of MATR3 levels, providing a rationale for their inability to fully reactivate the virus. These data have been confirmed ex vivo in cells derived from patients under suppressive ART. Finally, in the context of MATR3-depleted J-lat cells, impaired reactivation by SAHA could be fully rescued by MATR3 reconstitution, demonstrating a direct role of MATR3 in the posttranscriptional regulation of HIV-1 latency.IMPORTANCE The life cycle of HIV-1 requires integration of a DNA copy into the genome of the host cell. Transcription of the viral genes generates RNAs that are exported to the cytoplasm with the contribution of viral and cellular factors to get translated or incorporated in the newly synthesized virions. It has been observed that highly effective antiretroviral therapy, which is able to reduce circulating virus to undetectable levels, cannot fully eradicate the virus from cellular reservoirs that harbor a transcriptionally latent provirus. Thus, persistence of latently infected cells is the major barrier to a cure for HIV-1 infection. In order to purge these reservoirs of latently infected cells, it has been proposed to activate transcription to stimulate the virus to complete its life cycle. This strategy is believed to unmask these reservoirs, making them vulnerable to the immune system. However, limited successes of this approach may indicate additional posttranscriptional restrictions that need to be overcome for full virus reactivation. In this work we identify the cellular protein MATR3 as an essential cofactor of viral RNA processing. Reactivation of HIV-1 transcription per se is not sufficient to allow completion of a full life cycle of the virus if MATR3 is depleted. Furthermore, MATR3 is poorly expressed in quiescent CD4+ T lymphocytes that are the major reservoir of latent HIV-1. Cells derived from aviremic HIV-1 patients under antiretroviral therapy didn't express MATR3, and most importantly, latency-reversing agents proposed for the rescue of latent provirus were ineffective for MATR3 upregulation. To conclude, our work identifies a cellular factor required for full HIV-1 reactivation and points to the revision of the current strategies for purging viral reservoirs that focus only on transcription.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Characterization of HIV-1 Infection in Microglia-Containing Human Cerebral Organoids

    No full text
    The achievement of an HIV cure is dependent on the eradication or permanent silencing of HIV-latent viral reservoirs, including the understudied central nervous system (CNS) reservoir. This requires a deep understanding of the molecular mechanisms of HIV’s entry into the CNS, latency establishment, persistence, and reversal. Therefore, representative CNS culture models that reflect the intercellular dynamics and pathophysiology of the human brain are urgently needed in order to study the CNS viral reservoir and HIV-induced neuropathogenesis. In this study, we characterized a human cerebral organoid model in which microglia grow intrinsically as a CNS culture model to study HIV infection in the CNS. We demonstrated that both cerebral organoids and isolated organoid-derived microglia (oMG), infected with replication-competent HIVbal reporter viruses, support productive HIV infection via the CCR5 co-receptor. Productive HIV infection was only observed in microglial cells. Fluorescence analysis revealed microglia as the only HIV target cell. Susceptibility to HIV infection was dependent on the co-expression of microglia-specific markers and the CD4 and CCR5 HIV receptors. Altogether, this model will be a valuable tool within the HIV research community to study HIV–CNS interactions, the underlying mechanisms of HIV-associated neurological disorders (HAND), and the efficacy of new therapeutic and curative strategies on the CNS viral reservoir

    Directing HIV-1 for degradation by non-target cells, using bi-specific single-chain llama antibodies

    Get PDF
    While vaccination against HIV-1 has been so far unsuccessful, recently broadly neutralizing antibodies (bNAbs) against HIV-1 envelope glycoprotein were shown to induce long-term suppression in the absence of antiretroviral therapy in patients with antibody-sensitive viral reservoirs. The requirement of neutralizing antibodies indicates that the antibody mediated removal (clearance) of HIV-1 in itself is not efficient enough in these immune compromised patients. Here we present a novel, alternative approach that is independent of a functional immune system to clear HIV-1, by capturing the virus and redirecting it to non-target cells where it is internalized and degraded. We use bispecific antibodies with domains derived from small single chain Llama antibodies (VHHs). These bind with one domain to HIV-1 envelope proteins and with the other domain direct the virus to cells expressing epidermal growth factor receptor (EGFR), a receptor that is ubiquitously expressed in the body. We show that HIV envelope proteins, virus-like particles and HIV-1 viruses (representing HIV-1 subtypes A, B and C) are efficiently recruited to EGFR, internalized and degraded in the lysosomal pathway at low nM concentrations of bispecific VHHs. This directed degradation in non-target cells may provide a clearance platform for the removal of viruses and other unwanted agents from the circulation, including toxins, and may thus provide a novel method for curing

    Type I IFN signaling blockade by a PASylated antagonist during chronic SIV infection suppresses specific inflammatory pathways but does not alter T cell activation or virus replication.

    No full text
    Chronic activation of the immune system in HIV infection is one of the strongest predictors of morbidity and mortality. As such, approaches that reduce immune activation have received considerable interest. Previously, we demonstrated that administration of a type I interferon receptor antagonist (IFN-1ant) during acute SIV infection of rhesus macaques results in increased virus replication and accelerated disease progression. Here, we administered a long half-life PASylated IFN-1ant to ART-treated and ART-naïve macaques during chronic SIV infection and measured expression of interferon stimulated genes (ISG) by RNA sequencing, plasma viremia, plasma cytokines, T cell activation and exhaustion as well as cell-associated virus in CD4 T cell subsets sorted from peripheral blood and lymph nodes. Our study shows that IFN-1ant administration in both ART-suppressed and ART-untreated chronically SIV-infected animals successfully results in reduction of IFN-I-mediated inflammation as defined by reduced expression of ISGs but had no effect on plasma levels of IL-1β, IL-1ra, IL-6 and IL-8. Unlike in acute SIV infection, we observed no significant increase in plasma viremia up to 25 weeks after IFN-1ant administration or up to 15 weeks after ART interruption. Likewise, cell-associated virus measured by SIV gag DNA copies was similar between IFN-1ant and placebo groups. In addition, evaluation of T cell activation and exhaustion by surface expression of CD38, HLA-DR, Ki67, LAG-3, PD-1 and TIGIT, as well as transcriptome analysis showed no effect of IFN-I blockade. Thus, our data show that blocking IFN-I signaling during chronic SIV infection suppresses IFN-I-related inflammatory pathways without increasing virus replication, and thus may constitute a safe therapeutic intervention in chronic HIV infection
    corecore