8 research outputs found

    Roles of NLRP proteins in the pathophysiology of human fetal membranes

    No full text
    L’inflammation joue un rôle central dans la rupture des membranes fœtales (MF), que celle-ci ait lieu à terme ou prématurément, mais l’ensemble des mécanismes reste encore à élucider. Dans ce contexte, les études sur les inflammasomes, un des acteurs clés de l’inflammation, se sont récemment intensifiées. Ces plateformes intracellulaires, formées suite à un signal pro-inflammatoire, sont impliquées dans la mise en place et la propagation d’une réaction inflammatoire. Leur fonction au sein des MF commence à être décrite mais de nombreuses zones d’ombre persistent. L’objectif de ce travail a donc été de compléter la caractérisation des processus inflammatoires dépendant des inflammasomes dans les MF, en se focalisant sur les inflammasomes de type NLRP.Les inflammasomes NLRP sont constitués d’un récepteur NLRP, de l’adaptateur ASC et de la pro-caspase-1. Après avoir vérifié la présence de ces acteurs dans les MF à terme, un intérêt particulier a été porté à l’inflammasome de type NLRP7. En effet, sa fonction a déjà été étudiée dans la sphère placentaire mais jamais dans les MF. La stimulation de cellules épithéliales amniocytaires primaires avec un ligand spécifique de l’inflammasome NLRP7 a permis de montrer (i) l’augmentation du niveau protéique des trois acteurs de cet inflammasome (NLRP7, ASC et pro-caspase-1), (ii) la formation de l’inflammasome par co-localisation entre NLRP7 et ASC, (iii) l’activation de cet inflammasome montré par le clivage de deux effecteurs terminaux, la pro-caspase-1 et la gasdermine D. Ces résultats indiquent pour la première fois que les MF sont capables de mettre en jeu la signalisation de l’inflammasome NLRP7 en réponse à un signal pro-inflammatoire.En parallèle, deux activateurs naturels de l’inflammasome NLRP7 ont été identifiés pour la première fois dans les MF humaines à terme : il s’agit de Mycoplasma salivarium et Mycoplasma fermentans. Leur présence suggère le fait que l’inflammasome NLRP7 puisse jouer un rôle majeur dans les processus inflammatoires au sein des MF. L’ensemble de ce travail suggère donc fortement l’implication de l’inflammasome NLRP7 dans la physiopathologie de la rupture des membranes fœtales humaines, qui pourrait être une cible thérapeutique potentielle pour prévenir les ruptures prématurées des membranes fœtales.Inflammation plays a pivotal role in term or preterm fetal membranes (FM) rupture, but the detailed mechanisms remain unclear. In this context, studies on inflammasomes, one of the key inflammation actors, recently intensified. These intracellular platforms, formed following a pro-inflammatory signal, are involved in the establishment and propagation of an inflammatory reaction. Their functions in FM begin to be described but grey areas remain. Thus, the aim of this work was to complete the characterization of inflammasomes-dependent inflammatory processes, focusing on NLRP inflammasomes.NLRP inflammasomes are composed of a NLRP receptor, the adapter ASC and the pro-caspase-1. After verifying the presence of these actors in term human FM, we focused our interest on NLRP7 inflammasome. Indeed, its function has been studied in the placental area but never in FM. The stimulation of primary amnion epithelial cells with an NLRP7 inflammasome specific ligand demonstrated (i) an increased protein level of the three actors of this inflammasome (NLRP7, ASC and pro-caspase-1), (ii) the formation of this inflammasome by NLRP7 and ASC colocalization and (iii) the activation of this inflammasome, by cleavages of two end-effectors, pro-caspase-1 and gasdermin D. These results indicate for the first time that FM are able to activate NLRP7 inflammasome signalization in response to a pro-inflammatory signal. Moreover, two natural activators of NLRP7 inflammasome have been newly identified in term human FM: Mycoplasma salivarium and Mycoplasma fermentans. Their presence suggests that NLRP7 inflammasome could play an essential role in inflammatory processes in FM. All this work strongly suggests the involvement of NLRP7 inflammasome in pathophysiology of human FM rupture, which could be a potential therapeutic target to prevent premature rupture of FM

    Rôle des protéines NLRP dans la physiopathologie des membranes foetales humaines.

    No full text
    Inflammation plays a pivotal role in term or preterm fetal membranes (FM) rupture, but the detailed mechanisms remain unclear. In this context, studies on inflammasomes, one of the key inflammation actors, recently intensified. These intracellular platforms, formed following a pro-inflammatory signal, are involved in the establishment and propagation of an inflammatory reaction. Their functions in FM begin to be described but grey areas remain. Thus, the aim of this work was to complete the characterization of inflammasomes-dependent inflammatory processes, focusing on NLRP inflammasomes.NLRP inflammasomes are composed of a NLRP receptor, the adapter ASC and the pro-caspase-1. After verifying the presence of these actors in term human FM, we focused our interest on NLRP7 inflammasome. Indeed, its function has been studied in the placental area but never in FM. The stimulation of primary amnion epithelial cells with an NLRP7 inflammasome specific ligand demonstrated (i) an increased protein level of the three actors of this inflammasome (NLRP7, ASC and pro-caspase-1), (ii) the formation of this inflammasome by NLRP7 and ASC colocalization and (iii) the activation of this inflammasome, by cleavages of two end-effectors, pro-caspase-1 and gasdermin D. These results indicate for the first time that FM are able to activate NLRP7 inflammasome signalization in response to a pro-inflammatory signal. Moreover, two natural activators of NLRP7 inflammasome have been newly identified in term human FM: Mycoplasma salivarium and Mycoplasma fermentans. Their presence suggests that NLRP7 inflammasome could play an essential role in inflammatory processes in FM. All this work strongly suggests the involvement of NLRP7 inflammasome in pathophysiology of human FM rupture, which could be a potential therapeutic target to prevent premature rupture of FM.L’inflammation joue un rôle central dans la rupture des membranes fœtales (MF), que celle-ci ait lieu à terme ou prématurément, mais l’ensemble des mécanismes reste encore à élucider. Dans ce contexte, les études sur les inflammasomes, un des acteurs clés de l’inflammation, se sont récemment intensifiées. Ces plateformes intracellulaires, formées suite à un signal pro-inflammatoire, sont impliquées dans la mise en place et la propagation d’une réaction inflammatoire. Leur fonction au sein des MF commence à être décrite mais de nombreuses zones d’ombre persistent. L’objectif de ce travail a donc été de compléter la caractérisation des processus inflammatoires dépendant des inflammasomes dans les MF, en se focalisant sur les inflammasomes de type NLRP.Les inflammasomes NLRP sont constitués d’un récepteur NLRP, de l’adaptateur ASC et de la pro-caspase-1. Après avoir vérifié la présence de ces acteurs dans les MF à terme, un intérêt particulier a été porté à l’inflammasome de type NLRP7. En effet, sa fonction a déjà été étudiée dans la sphère placentaire mais jamais dans les MF. La stimulation de cellules épithéliales amniocytaires primaires avec un ligand spécifique de l’inflammasome NLRP7 a permis de montrer (i) l’augmentation du niveau protéique des trois acteurs de cet inflammasome (NLRP7, ASC et pro-caspase-1), (ii) la formation de l’inflammasome par co-localisation entre NLRP7 et ASC, (iii) l’activation de cet inflammasome montré par le clivage de deux effecteurs terminaux, la pro-caspase-1 et la gasdermine D. Ces résultats indiquent pour la première fois que les MF sont capables de mettre en jeu la signalisation de l’inflammasome NLRP7 en réponse à un signal pro-inflammatoire.En parallèle, deux activateurs naturels de l’inflammasome NLRP7 ont été identifiés pour la première fois dans les MF humaines à terme : il s’agit de Mycoplasma salivarium et Mycoplasma fermentans. Leur présence suggère le fait que l’inflammasome NLRP7 puisse jouer un rôle majeur dans les processus inflammatoires au sein des MF. L’ensemble de ce travail suggère donc fortement l’implication de l’inflammasome NLRP7 dans la physiopathologie de la rupture des membranes fœtales humaines, qui pourrait être une cible thérapeutique potentielle pour prévenir les ruptures prématurées des membranes fœtales

    Pathophysiological Implication of Pattern Recognition Receptors in Fetal Membranes Rupture: RAGE and NLRP Inflammasome

    No full text
    Preterm prelabor ruptures of fetal membranes (pPROM) are a pregnancy complication responsible for 30% of all preterm births. This pathology currently appears more as a consequence of early and uncontrolled process runaway activation, which is usually implicated in the physiologic rupture at term: inflammation. This phenomenon can be septic but also sterile. In this latter case, the inflammation depends on some specific molecules called “alarmins” or “damage-associated molecular patterns” (DAMPs) that are recognized by pattern recognition receptors (PRRs), leading to a microbial-free inflammatory response. Recent data clarify how this activation works and which receptor translates this inflammatory signaling into fetal membranes (FM) to manage a successful rupture after 37 weeks of gestation. In this context, this review focused on two PRRs: the receptor for advanced glycation end-products (RAGE) and the NLRP7 inflammasome

    Occurrence of a RAGE-Mediated Inflammatory Response in Human Fetal Membranes

    No full text
    International audienceContext: Sterile inflammation has been shown to play a key role in the rupture of the fetal membranes (FMs). Moreover, an early and exacerbated runaway inflammation can evolve into a preterm premature rupture of membranes and lead to potential preterm birth. In this context, we investigated the receptor for advanced glycation end products (RAGE), an axis implied in physiological sterile inflammation, in conjunction with two major ligands: AGEs and High-Mobility Group Box 1 (HMGB1). Our first objective was to determine the spatiotemporal expression profiles of the different actors of the RAGE-signaling axis in human FMs, including its intracellular adaptors Diaphanous-1 and Myd88. Our second goal was to evaluate the functionality of RAGE signaling in terms of FMs inflammation. Methods The presence of the actors (RAGE, HMGB1, Myd88, and Diaphanous-1) at the mRNA level was investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) in the human amnion and choriodecidua at the three trimesters and at term. Measurements were conducted at two distinct zones: the zone of intact morphology (ZIM) and the zone of altered morphology (ZAM). Then, proteins were quantified using Western blot analysis, and their localization was evaluated by immunofluorescence in term tissues. In addition, pro-inflammatory cytokine secretion was quantified using a Multiplex assay after the treatment of amnion and choriodecidua explants with two RAGE ligands (AGEs and HMGB1) in the absence or presence of a RAGE inhibitor (SAGEs). Results The FMs expressed the RAGE-signaling actors throughout pregnancy. At term, RNA and protein overexpression of the RAGE, HMGB1, and Diaphanous-1 were found in the amnion when compared to the choriodecidua, and the RAGE was overexpressed in the ZAM when compared to the ZIM. The two RAGE ligands (AGEs and HMGB1) induced differential cytokine production (IL1β and TNFα) in the amnion and choriodecidua. Conclusion Considered together, these results indicate that RAGE signaling is present and functional in human FMs. Our work opens the way to a better understanding of FMs weakening dependent on a RAGE-based sterile inflammation

    Advanced Glycation End Products and Receptor (RAGE) Promote Wound Healing of Human Corneal Epithelial Cells

    No full text
    International audiencePurpose We used a human corneal epithelial cell (HCE) line to determine the involvement of the advanced glycation end products (AGEs) / receptor for AGEs (RAGE) couple in corneal epithelium wound healing. Methods After wounding, HCE cells were exposed to two major RAGE ligands (HMGB1 and AGEs), and wound healing was evaluated using the in vitro scratch assay. Following wound healing, the HCE cells were used to study the influence of the RAGE ligands on HCE proliferation, invasion, and migration. Activation of the nuclear factor (NF)-κB signaling pathway by the AGEs/RAGE couple was tested using a luciferase reporter assay. Functional transcriptional regulation by this pathway was confirmed by quantification of expression of the connexin 43 target gene. For each experiment, specific RAGE involvement was confirmed by small interfering RNA treatments. Results AGEs treatment at a dose of 100 µg/mL significantly improved the wound healing process in a RAGE-dependent manner by promoting cell migration, whereas HMGB1 had no effect. No significant influence of the AGEs/RAGE couple was observed on cell proliferation and invasion. However, this treatment induced an early activation of the NF-κB pathway and positively regulated the expression of the target gene, connexin 43, at both the mRNA and protein levels. Conclusions Our results demonstrate that the RAGE pathway is activated by AGEs treatment and is involved in the promotion of corneal epithelial wound healing. This positive action is observed only during the early stages of wound healing, as illustrated by the quick activation of the NF-κB pathway and induction of connexin 43 expression

    Inhibition of the Receptor for Advanced Glycation End-Products in Acute Respiratory Distress Syndrome: A Randomised Laboratory Trial in Piglets.

    No full text
    International audienceThe receptor for advanced glycation end-products (RAGE) modulates the pathogenesis of acute respiratory distress syndrome (ARDS). RAGE inhibition attenuated lung injury and restored alveolar fluid clearance (AFC) in a mouse model of ARDS. However, clinical translation will require assessment of this strategy in larger animals. Forty-eight anaesthetised Landrace piglets were randomised into a control group and three treatment groups. Animals allocated to treatment groups underwent orotracheal instillation of hydrochloric acid (i) alone; (ii) in combination with intravenous administration of a RAGE antagonist peptide (RAP), or (iii) recombinant soluble (s)RAGE. The primary outcome was net AFC at 4 h. Arterial oxygenation was assessed hourly and alveolar-capillary permeability, alveolar inflammation and lung histology were assessed at 4 h. Treatment with either RAP or sRAGE improved net AFC (median [interquartile range], 21.2 [18.8-21.7] and 19.5 [17.1-21.5] %/h, respectively, versus 12.6 [3.2-18.8] %/h in injured, untreated controls), oxygenation and decreased alveolar inflammation and histological evidence of tissue injury after ARDS. These findings suggest that RAGE inhibition restored AFC and attenuated lung injury in a piglet model of acid-induced ARDS

    RAGE inhibition reduces acute lung injury in mice

    No full text
    International audienceThe receptor for advanced glycation end-products (RAGE) is involved in inflammatory response during acute respiratory distress syndrome (ARDS). Growing body of evidence support strategies of RAGE inhibition in experimental lung injury, but its modalities and effects remain underinvestigated. Anesthetised C57BL/6JRj mice were divided in four groups; three of them underwent orotracheal instillation of acid and were treated with anti-RAGE monoclonal antibody (mAb) or recombinant soluble RAGE (sRAGE), acting as a decoy receptor. The fourth group served as a control. Lung injury was assessed by the analysis of blood gases, alveolar permeability, histology, AFC, and cytokines. Lung expression and distribution epithelial channels ENaC, Na,K-ATPase, and aquaporin (AQP)−5 were assessed. Treatment with either anti-RAGE mAb or sRAGE improved lung injury, arterial oxygenation and decreased alveolar inflammation in acid-injured animals. Anti-RAGE therapies were associated with restored AFC and increased lung expression of AQP-5 in alveolar cell. Blocking RAGE had potential therapeutic effects in a translational mouse model of ARDS, possibly through a decrease in alveolar type 1 epithelial cell injury as shown by restored AFC and lung AQP-5 expression. Further mechanistic studies are warranted to describe intracellular pathways that may control such effects of RAGE on lung epithelial injury and repair. Acute respiratory distress syndrome (ARDS) is a syndrome of diffuse inflammatory lung injury with increased pulmonary oedema and the rapid onset of hypoxemic respiratory failure 1. ARDS is still undertreated 2 , with high mortality and few effective therapies 3-5. RAGE is a membrane receptor that is expressed in alveolar type (AT)-1 epithelial cells of the lung and a marker of epithelial injury 6. There are many RAGE ligands, including high-mobility group box 1 protein (HMGB1), advanced glycation end-products (AGEs) and S100 protein 7, 8. RAGE controls a variety of cellular processes such as cell proliferation and migration, inflammation, apoptosis and microtubule stabilization 9. Its main soluble forms, referred to as soluble RAGE (sRAGE), include the extra-cellular domain of membrane RAGE (mRAGE) which is cleaved by proteinases and endogenous secretory RAGE (esRAGE, produced after alternative splicing) 10. In clinical ARDS, sRAGE has good diagnostic value and is associated with lung injury severity, impaired alveolar fluid clearance (AFC) and prognosis 6, 11-13. Impaired AFC is a major feature of ARDS that contributes to mortality 14. The main mechanism responsible for the resolution of alveolar oedema is ion transport across the alveolar epithelium, primarily through epithe-lial sodium (ENaC), Na,K-ATPase and aquaporin (AQP)-5 channels, thus creating a local osmotic gradient to reabsorb the water fraction of the oedema fluid from the airspaces of the lungs 15-17. Recent data support an effect of RAGE activation on ENaC activity in cultured AT-1 cells 18. However, in contrast to the situation in mice, the clearance of alveolar fluid after birth in humans may not critically depend on ENaC, at least in part because of greater reliance on other epithelial channels 15. The modulation of RAGE may reduce inflammatory responses in several models 19. Intratracheal administration of HMGB1 induced lung injury in mice and the pathological effects of intratracheal lipopolysaccharide (LPS) were partially ameliorated by systemic administration of anti-HMGB1 antibodies 8 , thereby implicating pattern-recognition receptors such as RAGE or toll-like receptors in the pathogenesis of ARDS. Experimental murine pulmonary ischemia followed by reperfusion caused lung injury that was ameliorated in mice treated with sRAGE and in RAGE −/− mice 20. Using a mouse model of lun
    corecore