132 research outputs found
Practical study of optical stellar interferometry
In this work we present an observational technique and a detailed analysis of
the stellar interferograms produced by three bright stars: Betelgeuse, Rigel
and Sirius. It is shown that the atmospheric turbulence is responsible for the
reduction of the long-exposure fringe visibility of the obtained interference
patterns. By using different baselines in our interferometer, we are able to
distinguish the decay of the visibility with the baseline, how different
parameters such us the diameter of the holes in our interferometer or their
distribution affects the pattern, and to measure the turbulence with the
estimation of the Fried parameter r0. The work and methodology are presented as
a method for postgraduate students that targets practical learning of optical
interferometry in astronomy and how it is affected by several causes, such as
the atmospheric turbulence.Comment: 11 pages, 6 figures, paper submitted and accepted to AJ
First Earth-based Detection of a Superbolide on Jupiter
Cosmic collisions on planets cause detectable optical flashes that range from
terrestrial shooting stars to bright fireballs. On June 3, 2010 a bolide in
Jupiter's atmosphere was simultaneously observed from the Earth by two amateur
astronomers observing Jupiter in red and blue wavelengths. The bolide appeared
as a flash of 2 s duration in video recording data of the planet. The analysis
of the light curve of the observations results in an estimated energy of the
impact of 0.9-4.0x10^{15} J which corresponds to a colliding body of 8-13 m
diameter assuming a mean density of 2 g cm^{-3}. Images acquired a few days
later by the Hubble Space Telescope and other large ground-based facilities did
not show any signature of aerosol debris, temperature or chemical composition
anomaly, confirming that the body was small and destroyed in Jupiter's upper
atmosphere. Several collisions of this size may happen on Jupiter on a yearly
basis. A systematic study of the impact rate and size of these bolides can
enable an empirical determination of the flux of meteoroids in Jupiter with
implications for the populations of small bodies in the outer Solar System and
may allow a better quantification of the threat of impacting bodies to Earth.
The serendipitous recording of this optical flash opens a new window in the
observation of Jupiter with small telescopes
Gas Giants
The gas giants (Jupiter and Saturn) and icy giants (Uranus and Neptune) are fluid planets with atmospheres primarily made of hydrogen and helium. The part of their atmospheres accessible to remote sensing occupies only a small fraction of their radii (0.05%). Clouds and hazes form around the 1 bar altitude pressure level and extend vertically, according to the thermochemical models, in a layer with a thickness of 200_500 km where temperature increases with depth (usually known as the "weather layer"). Clouds made of NH3, NH4SH, H2O (in Jupiter and Saturn), with the addition of CH4 (in Uranus and Neptune), cover the planet in stratified layers that are mixed with unknown hromophore agents. Dynamical phenomena in the weather layer shape different cloud patterns that define the visible appearance of these planets. In the thermal part of the spectrum clouds act as opacity sources providing brightness contrasts. The ensemble of cloud morphologies in terms of shapes, sizes and albedos allows their use as tracers of the atmospheric motions in the weather layer (Fig. 4.1). This is the main tool employed so far to study the winds on these fourplanets
An enduring rapidly moving storm as a guide to Saturn's Equatorial jet's complex structure
This work is licensed under a Creative Commons Attribution 4.0Saturn has an intense and broad eastward equatorial jet with a complex three-dimensional structure mixed with time variability. The equatorial region experiences strong seasonal insolation variations enhanced by ring shadowing, and three of the six known giant planetary-scale storms have developed in it. These factors make Saturn’s equator a natural laboratory to test models of jets in giant planets. Here we report on a bright equatorial atmospheric feature imaged in 2015 that moved steadily at a high speed of 450 ms-1 not measured since 1980–1981 with other equatorial clouds moving within an ample range of velocities. Radiative transfer models show that these motions occur at three altitude levels within the upper haze and clouds. We find that the peak of the jet (latitudes 10ºN to 10º S) suffers intense vertical shears reaching þ2.5 ms-1 km-1, two orders of magnitude higher than meridional shears, and temporal variability above 1 bar altitude level.Peer ReviewedPostprint (published version
Cellular patterns and dry convection in textured dust storms at the edge of Mars North Polar Cap
We present a study of textured local dust storms that develop at the northern polar cap boundary on Mars springtime. We have used images obtained with VMC and HRSC cameras onboard Mars Express and MARCI on MRO to analyze dust storms captured from March to July 2019 (Ls = 350° in MY 34–Ls = 54° in MY 35). The textured storms grow in the longitude sector 150°E-210°E centered at latitude ~60°N and exhibit spiral, filamentary and compact shapes that change and evolve rapidly in a daily basis. The storms translate by prevailing east and southeast winds with speeds 15–45 ms−1. In some areas of their interiors they show organized clusters of cells formed typically by 100 elements with sizes ~5–30 km with a length/width ratio ~ 1.2–3 in the wind direction. The cells have elongated downwind tails with lengths 4–8 times the cell size. The cells top altitudes are ~6–11 km above their surroundings. We propose that the spirals grow as baroclinic vortices within a vertically sheared eastward jet present at this epoch in Mars due to the intense meridional temperature gradient at the polar cap edge. We show using a simple one-dimensional model that the cells can be produced by shallow dry convection with dust acting as the heating source to generate the updrafts. These patterns resemble those seen in laboratory experiments and on clouds in Earth's atmosphere and can serve to comparatively elucidate and discern the different mechanisms at work in each case
Long-Term Evolution of the Aerosol Debris Cloud Produced by the 2009 Impact on Jupiter
We present a study of the long-term evolution of the cloud of aerosols produced in the atmosphere of Jupiter by the impact of an object on 19 July 2009. The work is based on images obtained during 5 months from the impact to 31 December 2009 taken in visible continuum wavelengths and from 20 July 2009 to 28 May 2010 taken in near-infrared deep hydrogen-methane absorption bands at 2.1-2.3 micron. The impact cloud expanded zonally from approximately 5000 km (July 19) to 225,000 km (29 October, about 180 deg in longitude), remaining meridionally localized within a latitude band from 53.5 deg S to 61.5 deg S planetographic latitude. During the first two months after its formation the site showed heterogeneous structure with 500-1000 km sized embedded spots. Later the reflectivity of the debris field became more homogeneous due to clump mergers. The cloud was mainly dispersed in longitude by the dominant zonal winds and their meridional shear, during the initial stages, localized motions may have been induced by thermal perturbation caused by the impact's energy deposition. The tracking of individual spots within the impact cloud shows that the westward jet at 56.5 deg S latitude increases its eastward velocity with altitude above the tropopause by 5- 10 m/s. The corresponding vertical wind shear is low, about 1 m/s per scale height in agreement with previous thermal wind estimations. We found evidence for discrete localized meridional motions with speeds of 1-2 m/s. Two numerical models are used to simulate the observed cloud dispersion. One is a pure advection of the aerosols by the winds and their shears. The other uses the EPIC code, a nonlinear calculation of the evolution of the potential vorticity field generated by a heat pulse that simulates the impact. Both models reproduce the observed global structure of the cloud and the dominant zonal dispersion of the aerosols, but not the details of the cloud morphology. The reflectivity of the impact cloud decreased exponentially with a characteristic timescale of 15 days; we can explain this behavior with a radiative transfer model of the cloud optical depth coupled to an advection model of the cloud dispersion by the wind shears. The expected sedimentation time in the stratosphere (altitude levels 5-100 mbar) for the small aerosol particles forming the cloud is 45-200 days, thus aerosols were removed vertically over the long term following their zonal dispersion. No evidence of the cloud was detected 10 months after the impact
Mars Express and Trace Gas Orbiter: status, science highlights, plans
Stars and planetary systemsLaboratory astrophysics and astrochemistr
- …