Abstract

The gas giants (Jupiter and Saturn) and icy giants (Uranus and Neptune) are fluid planets with atmospheres primarily made of hydrogen and helium. The part of their atmospheres accessible to remote sensing occupies only a small fraction of their radii (0.05%). Clouds and hazes form around the 1 bar altitude pressure level and extend vertically, according to the thermochemical models, in a layer with a thickness of 200_500 km where temperature increases with depth (usually known as the "weather layer"). Clouds made of NH3, NH4SH, H2O (in Jupiter and Saturn), with the addition of CH4 (in Uranus and Neptune), cover the planet in stratified layers that are mixed with unknown hromophore agents. Dynamical phenomena in the weather layer shape different cloud patterns that define the visible appearance of these planets. In the thermal part of the spectrum clouds act as opacity sources providing brightness contrasts. The ensemble of cloud morphologies in terms of shapes, sizes and albedos allows their use as tracers of the atmospheric motions in the weather layer (Fig. 4.1). This is the main tool employed so far to study the winds on these fourplanets

    Similar works