46 research outputs found

    A 5 km resolution regional climate simulation for Central Europe: Performance in high mountain areas and seasonal, regional and elevation-dependent variations

    Get PDF
    Mountain regions with complex orography are a particular challenge for regional climate simulations. High spatial resolution is required to account for the high spatial variability in meteorological conditions. This study presents a very high-resolution regional climate simulation (5 km) using the Weather Research and Forecasting Model (WRF) for the central part of Europe including the Alps. Global boundaries are dynamically downscaled for the historical period 1980–2009 (ERA-Interim and MPI-ESM), and for the near future period 2020–2049 (MPI-ESM, scenario RCP4.5). Model results are compared to gridded observation datasets and to data from a dense meteorological station network in the Berchtesgaden Alps (Germany). Averaged for the Alps, the mean bias in temperature is about −0.3 °C, whereas precipitation is overestimated by +14% to +19%. R2^{2} values for hourly, daily and monthly temperature range between 0.71 and 0.99. Temporal precipitation dynamics are well reproduced at daily and monthly scales (R2^{2} between 0.36 and 0.85), but are not well captured at hourly scale. The spatial patterns, seasonal distributions, and elevation-dependencies of the climate change signals are investigated. Mean warming in Central Europe exhibits a temperature increase between 0.44 °C and 1.59 °C and is strongest in winter and spring. An elevation-dependent warming is found for different specific regions and seasons, but is absent in others. Annual precipitation changes between −4% and +25% in Central Europe. The change signals for humidity, wind speed, and incoming short-wave radiation are small, but they show distinct spatial and elevation-dependent patterns. On large-scale spatial and temporal averages, the presented 5 km RCM setup has in general similar biases as EURO-CORDEX simulations, but it shows very good model performance at the regional and local scale for daily meteorology, and, apart from wind-speed and precipitation, even for hourly values

    HW/SW-database-codesign for compressed bitmap index processing

    Get PDF
    Compressed bitmap indices are heavily used in scientific and commercial database systems because they largely improve query performance for various workloads. Early research focused on finding tailor-made index compression schemes that are amenable for modern processors. Improving performance further typically comes at the expense of a lower compression rate, which is in many applications not acceptable because of memory limitations. Alternatively, tailor-made hardware allows to achieve a performance that can only hardly be reached with software running on general-purpose CPUs. In this paper, we will show how to create a custom instruction set framework for compressed bitmap processing that is generic enough to implement most of the major compressed bitmap indices. For evaluation, we implemented WAH, PLWAH, and COMPAX operations using our framework and compared the resulting implementation to multiple state-of-the-art processors. We show that the custom-made bitmap processor achieves speedups of up to one order of magnitude by also using two orders of magnitude less energy compared to a modern energy-efficient Intel processor. Finally, we discuss how to embed our processor with database-specific instruction sets into database system environments

    Will forest dynamics continue to accelerate throughout the 21st century in the Northern Alps?

    Get PDF
    Observational evidence suggests that forests in the Northern Alps are changing at an increasing rate as a consequence of climate change. Yet, it remains unclear whether the acceleration of forest change will continue in the future, or whether downregulating feedbacks will eventually decouple forest dynamics from climate change. Here we studied future forest dynamics at Berchtesgaden National Park, Germany by means of a process-based forest landscape model, simulating an ensemble of 22 climate projections until the end of the 21st century. Our objectives were (i) to assess whether the observed acceleration of forest dynamics will continue in the future, (ii) to analyze how uncertainty in future climate translates to variation in future forest disturbance, structure, and composition, and (iii) to determine the main drivers of future forest dynamics. We found that forest dynamics continue to accelerate in the coming decades, with a trend towards denser, structurally more complex and more species rich forests. However, changes in forest structure leveled off in the second half of the 21st century regardless of climate scenario. In contrast, climate scenarios caused trajectories of tree species change to diverge in the second half of the 21st century, with stabilization under RCP 2.6 and RCP 4.5 scenarios and accelerated loss of conifers under RCP 8.5. Disturbance projections were 3 to 20 times more variable than future climate, whereas projected future forest structure and composition varied considerably less than climate. Indirect effects of climate change via alterations of the disturbance regime had a stronger impact on future forest dynamics than direct effects. Our findings suggest that dampening feedbacks within forest dynamics will decelerate forest change in the second half of the 21st century. However, warming beyond the levels projected under RCP 4.5 might profoundly alter future forest disturbance and composition, challenging conservation efforts and ecosystem service supply. --Raw simulation outputs are extensive in size and can be requested from the corresponding author, Dominik Thom.Funding provided by: European Research CouncilCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100000781Award Number: 101001905Funding provided by: Bavarian State Ministry of the Environment and Consumer ProtectionCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100010219Award Number: StMUV TKP01KPB-66747The data is based on simulations of Berchtesgaden National Park using iLand (https://iland-model.org/). Simulations include 22 climate change projections à 20 replicates from year 2020 - 2100. Presented here is the analysis of iLand outputs

    Stringent doxycycline-dependent control of gene activities using an episomal one-vector system

    Get PDF
    Conditional expression systems are of pivotal importance for the dissection of complex biological phenomena. Here, we describe a novel EBV-derived episomally replicating plasmid (pRTS-1) that carries all the elements for conditional expression of a gene of interest via Tet regulation. The vector is characterized by (i) low background activity, (ii) high inducibility in the presence of doxycycline (Dox) and (iii) graded response to increasing concentrations of the inducer. The chicken beta actin promoter and an element of the murine immunoglobin heavy chain intron enhancer drive constitutive expression of a bicistronic expression cassette that encodes the highly Dox-sensitive reverse tetracycline controlled transactivator rtTA2(S)-M2 and a Tet repressor-KRAB fusion protein (tTS(KRAB)) (silencer) placed downstream of an internal ribosomal entry site. The gene of interest is expressed from the bidirectional promoter P(tet)bi-1 that allows simultaneous expression of two genes, of which one may be used as surrogate marker for the expression of the gene of interest. Tight down regulation is achieved through binding of the silencer tTS(KRAB) to P(tet)bi-1 in the absence of Dox. Addition of Dox releases repression and via binding of rtTA2(S)-M2 activates P(tet)bi-1

    Which chronic diseases and disease combinations are specific to multimorbidity in the elderly? Results of a claims data based cross-sectional study in Germany

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing interest in multimorbidity is observable in industrialized countries. For Germany, the increasing attention still goes still hand in hand with a small number of studies on multimorbidity. The authors report the first results of a cross-sectional study on a large sample of policy holders (n = 123,224) of a statutory health insurance company operating nationwide. This is the first comprehensive study addressing multimorbidity on the basis of German claims data. The main research question was to find out which chronic diseases and disease combinations are specific to multimorbidity in the elderly.</p> <p>Methods</p> <p>The study is based on the claims data of all insured policy holders aged 65 and older (n = 123,224). Adjustment for age and gender was performed for the German population in 2004. A person was defined as multimorbid if she/he had at least 3 diagnoses out of a list of 46 chronic conditions in three or more quarters within the one-year observation period. Prevalences and risk-ratios were calculated for the multimorbid and non-multimorbid samples in order to identify diagnoses more specific to multimorbidity and to detect excess prevalences of multimorbidity patterns.</p> <p>Results</p> <p>62% of the sample was multimorbid. Women in general and patients receiving statutory nursing care due to disability are overrepresented in the multimorbid sample. Out of the possible 15,180 combinations of three chronic conditions, 15,024 (99%) were found in the database. Regardless of this wide variety of combinations, the most prevalent individual chronic conditions do also dominate the combinations: Triads of the six most prevalent individual chronic conditions (hypertension, lipid metabolism disorders, chronic low back pain, diabetes mellitus, osteoarthritis and chronic ischemic heart disease) span the disease spectrum of 42% of the multimorbid sample. Gender differences were minor. Observed-to-expected ratios were highest when purine/pyrimidine metabolism disorders/gout and osteoarthritis were part of the multimorbidity patterns.</p> <p>Conclusions</p> <p>The above list of dominating chronic conditions and their combinations could present a pragmatic start for the development of needed guidelines related to multimorbidity.</p

    Calibration of Multi-Channel Spaceborne SAR - Challenges and Strategies -

    Get PDF
    Instrument calibration has ever been essential to synthetic aperture radar. This paper reviews the calibration functionality of current state-of-the-art spaceborne SAR and then proceeds to suggest calibration strategies for future SAR systems. These systems will incorporate multi-channel digital beamforming capabilities which offer new opportunities but also challenges for digital calibration. At the same time, the increased complexity of instrument calibration can not be extrapolated to future systems. This requires a reconsideration of the calibration strategy for spaceborne SAR. The paper is seen as a step in this direction

    Calibration Concepts of Multi-Channel Spaceborne SAR

    Get PDF
    Future synthetic aperture radar (SAR) systems will incorporate multi-channel Digital Beam-Forming (DBF) capabilities and operate in new modes. These SAR instruments offer new opportunities but also challenges for calibration. For example on-board real time channel adjustment is unavoidable, but then the on-board digital signal processing capabilities are also readily available in DBF SAR. In any case, current instrument calibration concepts can not be extrapolated to future multi-channel SAR. Thus a new approach is requires required here. This paper reviews the calibration functionality of state-of-the-art spaceborne SAR and then suggest a calibration concept for future SAR
    corecore