

Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821449

Sebastian Haas, Tomas Karnagel, Oliver Arnold, Erik Laux, Benjamin Schlegel, Gerhard
Fettweis, Wolfgang Lehner

HW/SW-database-codesign for compressed bitmap index processing

Erstveröffentlichung in / First published in:

International Conference on Application Specific Systems (ASAP), Architectures and
Processors. London, 06.-08.07.2016. IEEE, S. 50-57. ISBN 978-1-5090-1503-0.

DOI: http://dx.doi.org/10.1109/ASAP.2016.7760772

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-821449
http://dx.doi.org/10.1109/ASAP.2016.7760772

HW/SW-Database-CoDesign
for Compressed Bitmap Index Processing

Sebastian Haas∗, Tomas Karnagel†, Oliver Arnold∗,
Erik Laux∗1, Benjamin Schlegel†2, Gerhard Fettweis∗, Wolfgang Lehner†
∗Vodafone Chair Mobile Communications Systems, †Database Technology Group

Center for Advancing Electronics Dresden (cfaed)
Technische Universität Dresden, Germany

Email: {first.last}@tu-dresden.de

Abstract—Compressed bitmap indices are heavily used in
scientific and commercial database systems because they largely
improve query performance for various workloads. Early re-
search focused on finding tailor-made index compression schemes
that are amenable for modern processors. Improving performance
further typically comes at the expense of a lower compression
rate, which is in many applications not acceptable because of
memory limitations. Alternatively, tailor-made hardware allows
to achieve a performance that can only hardly be reached with
software running on general-purpose CPUs. In this paper, we will
show how to create a custom instruction set framework for com-
pressed bitmap processing that is generic enough to implement
most of the major compressed bitmap indices. For evaluation,
we implemented WAH, PLWAH, and COMPAX operations using
our framework and compared the resulting implementation to
multiple state-of-the-art processors. We show that the custom-
made bitmap processor achieves speedups of up to one order of
magnitude by also using two orders of magnitude less energy
compared to a modern energy-efficient Intel processor. Finally,
we discuss how to embed our processor with database-specific
instruction sets into database system environments.

I. INTRODUCTION

Compressed bitmap indices are heavily used in scientific
and commercial database systems because they largely im-
prove query performance for various workloads. Application
areas include traditional data warehouse applications as well as
multimedia and scientific processing. Most of the applications
operate on huge amounts of data, which makes it imperative
to store the indices as compactly as possible but at the same
time without affecting the index performance too much.

Early research focused on developing index compression
schemes that are optimized for general-purpose processors.
For example, several authors proposed to use byte-aligned [1]
and word-aligned [2], [3] compression schemes instead of
generic bitwise compression algorithms. After the compres-
sion, index operations like intersection can be done directly
on the compressed bitmaps to save memory and computation
time. However, even with elaborate optimizations, e.g., the
use of SIMD instructions, all existing algorithms are highly
CPU bound. Improving performance further thus typically
comes at the expense of a lower compression rate, which
is not acceptable for many applications because of memory
limitations especially in main memory settings. More recent

1Author is now at BearingPoint GmbH, Berlin, Germany.
2Author is now at Oracle Labs, Belmont, CA, USA.

works therefore try to port existing algorithms to GPUs [4] to
benefit from their high computation capabilities. This seems
to be a good fit since the algorithms are mostly stateless
and easy to parallelize. The next logical step is therefore to
build hardware that is solely used to speed up processing on
compressed bitmap indices.

Generally, tailor-made hardware allows to achieve perfor-
mance numbers that cannot be reached with software running
on general-purpose CPUs, while at the same time, addressing
the Dark Silicon problem [5]. Besides a better performance,
such hardware is much more energy-efficient, which is a
feature that becomes more and more important for future
processors. The main disadvantages of custom hardware are
the high development costs that come with designing and
verifying a new CPU, as well as building respective drivers
and software stack. However, there is actually no need to
build a full processor from scratch. Recent work in the field of
databases [6] and video coding [7] has shown that these costs
are manageable when using customizable CPUs. Two areas,
besides others, would mostly benefit from these customized
CPUs: high end solutions, where customers are willing to pay
for the enhanced performance, and cloud settings, where the
hardware can be exclusively used for database acceleration
while being highly energy-efficient.

In this paper, we will show how to create a custom instruc-
tion set framework for compressed bitmap processing that is
generic enough to implement most of the major compressed
bitmap indices. We exemplarily show the integration of the
developed instruction set within a customizable processor.
Nevertheless, the instruction set is generic enough to be
integrated into future instruction sets of various hardware
vendors as well as to be part of open-hardware platforms like
OpenSparc.

Our contributions are as follows:

• We review two types of bitmap index compressions and
explain both with a number of examples.

• We describe the development of instruction set extensions
together with a processor architecture that supports these
adjustments.

• We propose a hardware framework for the easy im-
plementation of instruction set extensions for stateless
compressed bitmap processing.

• We evaluate our framework using three different compres-
sions each with three different processing operations.

Final edited form was published in "International Conference on Application Specific Systems (ASAP), Architectures and Processors. London 2016", S. 50-57,
ISBN 978-1-5090-1503-0

http://dx.doi.org/10.1109/ASAP.2016.7760772

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

• Finally, we give an outlook on future work, especially on
settings in which our ideas could be integrated in larger
hardware and database systems.

II. PROCESSING COMPRESSED BITMAP INDEXES

Bitmap indexes are well known and widely used in
database systems, mainly to accelerate OLAP queries on large
relational data. There, for example, bitmaps can be used for
the fast evaluation and intersection of tuples satisfying query
arguments. Usually columns with a limited number of distinct
values are encoded in a number of bitmaps, where each bitmap
is dedicated to one value or a range of values within a column.
A set bit then signals a match between the corresponding row
and the attribute.

Bitmaps themselves compress the tuples immensely by
encoding only one bit per tuple. However, the number of
bitmaps to represent a column depends on the number of
distinct values, i.e., having many distinct values leads to
storing many bitmaps, which as a consequence could lead to a
significant memory overhead. Fortunately, when having many
bitmaps for a single column, the individual bitmaps are only
sparsely filled leading to a high compression potential.

In database systems, sparsely filled bitmaps are tradition-
ally compressed using run-length-encoding (RLE) [8]. How-
ever, over the last 20 years, many algorithms were proposed to,
on the one hand, compress bitmaps as good as possible while,
on the other hand, supporting basic operations directly on the
compressed representation. Ideally, bitmaps can be intersected
without being decompressed beforehand.

A. Compression Approaches

When looking at bitmap compression algorithms, we iden-
tified two different approaches: (1) Algorithms using signal
words to describe the encoding of the following words, and
(2) Algorithms using stateless compression words, with en-
coding information and the actual data encoded in the same
word. The first approach uses special signal words, usually to
state the number of following uncompressed words (literals),
RLE compressed words (fills), or bit positions for single set
bits (sparse). Well known examples for this approach are Byte-
Aligned Bitmap Code (BBC) [1] and Enhanced Word-Aligned
Hybrid (EWAH) [9].

The second approach omits these signal words by speci-
fying different words (e.g., fills or literals) within the word
itself. Each word encodes an identifier, leaving the different
words independent of each other. Therefore the algorithms
do not have to know a state when extracting encoded words.
Examples are Word-Aligned Hybrid (WAH) [10], Position List
Word Aligned Hybrid (PLWAH) [2], and COMPAX [3].

In this work, we accelerate logical bitmap operations
through the usage of application-specific processor instruc-
tions. In order to provide a general overview, we investigated
the characteristics of both approaches. Stateless compression
on the one hand always produces an overhead through en-
coding word types and other information within the code
word, while approaches with signal words can minimize this
overhead down to only one signal word, for certain kinds of
data. However, compression, decompression, and logical oper-
ations are usually more complex with signal words, forcing the

algorithm to access signal words multiple times, which may
lead to more random memory lookups for read operations,
as well as to a larger number of random memory writes for
write operations. Stateless approaches on the other hand, only
access the current word and always read or write sequentially.
Especially, the latter point makes it ideal for acceleration in
hardware, where a streaming-like approach is preferred. There-
fore, we limit the scope of this work to stateless compression
approaches.

B. Stateless Bitmap Compression

In the following subsection, we describe three stateless
bitmap compression algorithms that we chose as an example
to be implemented within our hardware instruction framework.

1) Word-Aligned Hybrid (WAH): The Word-Aligned Hy-
brid code (WAH) [10] was developed to reduce computational
complexity compared to compression algorithms using signal
words. The WAH compressed bitmaps can contain RLE com-
pressed fills and uncompressed literals but instead of using
signal words, a 1-bit flag is used to differentiate the two types
of words. In this context, a word usually has the size of 32 bits
or 64 bits. For simplicity, we limit ourselves to 32-bit words.

Literal:0 0 101011 10101011 10101011 10101011

0-Fill: 1 0 000000 00000000 00000000 00100101

1-Fill: 1 1 000000 00000000 00000000 00000101

word type 31 bit
uncompressed data

fill type 30 bit fill counter

Fig. 1: WAH Code

Three example words are illustrated in Figure 1. A literal
is encoded with the most significant bit (MSB) set to zero (or
unset bit) and 31 bits of uncompressed data. A fill is encoded
with the MSB set to one, a second bit indicates if the fill is
representing set or unset bits, and 30 bits of payload indicate
the number of represented chunks. For WAH, chunks have the
size of 31 bits. With a fill counter of 30 bits, a single fill can
represent up to 230 chunks ∗ 31 bits per chunk = 3.875 GB,
if the bitmap contains solely set or unset bits. In the opposite
case, if the uncompressed chunks always contain a mixture of
set and unset bits, the whole bitmap is encoded as literals
leading to an overhead in size of 1/32 = 3.125%. The
actual compression ratio (size of compressed bitmap related
to size of uncompressed bitmap) depends on the bit density
and distribution of the uncompressed data. However, the worst
case is only slightly larger than the original data, while the
best case encodes about 3.9 GB of data in just 4 bytes.

Logical operations on compressed bitmaps include AND,
OR, XOR, and many more. These operations are simple
for uncompressed bitmaps, however, the execution is highly
memory bound. With compressed bitmaps, the operations are
shifting from being memory bound to being computation
bound, depending on the complexity of the bitmap encoding.

For the intersection of two WAH compressed bitmaps, the
following steps are performed in a loop, as long as there
are words left in both bitmaps: 1) loading next word(s) if
needed, 2) calculating the output, and 3) combining the output

Final edited form was published in "International Conference on Application Specific Systems (ASAP), Architectures and Processors. London 2016", S. 50-57,
ISBN 978-1-5090-1503-0

http://dx.doi.org/10.1109/ASAP.2016.7760772

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

if needed. A new word is loaded from a bitmap, if the last word
was completely consumed by the previous calculation. The two
current words, one of each bitmap, are used in the subsequent
calculation step. There are three types of calculations: fill-fill,
literal-fill, and literal-literal. Literals are always consumed and
a new word has to be loaded after the calculations. For fills,
the fill counter is updated and if zero, a new word needs to
be loaded. Each calculation step produces one WAH encoded
output word. The words of multiple calculation steps might be
combined, if they are fills of the same kind.

2) Position List Word Aligned Hybrid (PLWAH): WAH was
extended by several approaches. One of these approaches is
PLWAH [2]. Here, the main assumption is that a fill is mostly
followed by a literal and that this literal is most likely sparse.
Especially, for a bitmap index on a column with many distinct
values, the single bitmap is only sparsely filled. The idea
of PLWAH (which is also used in the similar compression
CONCISE [11]) is to encode the following literals within
the fill. For WAH, 30 bits were used for the fill counter.
Small counter values exhibit several unused bits. This allows
recycling these bits to encode the following literal. In the case
of PLWAH, five bits are used to encode the position of one
divergent bit in the following literal. The divergent bit for a
1-fill is an unset bit and vice versa.

3) COMPressed Adaptive indeX (COMPAX): COM-
PAX [3] extends the PLWAH approach by encoding multiple
fills or literals into one 32-bit code word. Likewise in WAH,
a literal is encoded with a 1-bit type flag and 31 bits of
uncompressed data. Additionally, there are three other code
words, each having the type encoded in the most significant
three bits. 0-fills contain three unset bits as type description
and 29 bits for the counter. A 1-fill type is not supported. The
reason leads back to the main use case of COMPAX - encoding
of network traffic. The authors analyzed typical networking
data and conclude that 1-fills nearly never occur. For the
application in databases, the conclusion could be similar when
working on a large number of distinct values for a column and
therefore many sparsely filled bitmaps. Besides literals and 0-
fills, the authors propose two hybrid words: Fill-Literal-Fill
and Literal-Fill-Literal. We refer to the literature [3] for more
information.

III. HARDWARE FOUNDATION

After outlining the core principles of stateless bitmap
compression schemes, we give an overview of our processor
environment and the involved tool flow in order to provide a
solid background for the instruction set framework.

A. Extending the Core Processor

We rely on a Tensilica LX5 RISC processor as a starting
point for our proposed framework. The LX5 core basically
consists of a RISC instruction set as well as register files. A
64 KB local instruction memory and two 32 KB local data
memories are connected, respectively; both memory interfaces
exhibit a width of 32 bit.

In order to develop an instruction set extension, a complex
process has to be implemented incorporating different tools
from Tensilica or Synopsys depending on the state of the
development. On the one hand, the processor may be extended

Register Files

Extended Tensilica LX5 Processor

Inst.
Fetch

Instruction Set

Basic RISC Instr. Set

Bitmap-Specific Instr. Set

Basic Registers

Bitmap-Specific Registers

Bitmap-Specific States

Interconnection N
etw

ork
Data Prefetcher

Local Instr.
Memory

Local Data
Memory 0

Local Data
Memory 1

LSU0

LSU1

64

128

128

Fig. 2: Extended Processor Model

by changing the local memory size, memory interface widths,
adding additional load-store units, and other configurations
like additional floating point units and extended memory
management units. On the other hand, Tensilica Configurable
Processors allow the development of new instructions exploit-
ing the different processor units.

For identifying the potential of additional instructions, an
algorithm is being profiled using a cycle accurate simulator
in order to detect hotspots in the original C/C++ code. The
simulator enables simple debugging and maintenance in a
software environment. Within a subsequent step, synthesis of
the generated processor on register-transfer level is performed
to obtain results of timing, area, and power. While developing
the framework for different bitmap algorithms, we synthesized
all processor variants with 65 nm low-power TSMC libraries
under typical conditions (25 ◦C, 1.2 V).

B. The Extended Processor

Following the tool flow, we extended the Tensilica LX5
RISC processor as shown in Figure 2 allowing us to integrate
the extended instructions by providing additional registers and
states (states are bound to our special bitmap instructions and
allow read and write accesses in the same clock cycle). The
extended processor exhibits a second load-store unit (LSU)
enabling simultaneous accesses to two local data memories.
Moreover, these two memory interfaces are enlarged from
32 bit to 128 bit for an even faster memory access. Addition-
ally, the local instruction bus is extended from 32 bit to 64 bit,
enabling us to introduce a new 64-bit Very Large Instruction
Word (VLIW) format. This instruction format ensures the
control of our two load-store units by executing multiple
instructions within a single clock cycle.

Figure 2 also outlines a Data Prefetcher operating next
to the processor allowing us to preload data from an external
off-chip memory into the local memories over a Network-on-
Chip. With respect to the given experiments in Section V, the
prefetcher unit was not yet available, but will be part of our
future work.

In addition to unit extensions, the final processor also
incorporates a bitmap-specific instruction set. It represents
the extension to the basic instruction set (transfer, arithmetic,
logical, and jump instructions), which is included in every
processor to perform normal program execution. In contrast

Final edited form was published in "International Conference on Application Specific Systems (ASAP), Architectures and Processors. London 2016", S. 50-57,
ISBN 978-1-5090-1503-0

http://dx.doi.org/10.1109/ASAP.2016.7760772

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

BM_cOP_ST128

LD
12

8_
cB

M
1 BM1Load2 BM1Load3 BM1Load1 BM1Load0

BM1CW2 BM1CW3 BM1CW1 BM1CW0

Bitmap Operation (opID)

Preprocessing: Code Word Type / Fill Counter?

32

LD128_cBM
2

BM2Load2 BM2Load3 BM2Load1 BM2Load0

BM2CW2 BM2CW3 BM2CW1 BM2CW0

32 32

32

32 32

BM3Store2 BM3Store3 BM3Store1 BM3Store0

128 from Local Data
Memory 1

128 from Local Data
Memory 0

128

BM3CW2 BM3CW3 BM3CW1 BM3CW0

to Local Data
Memory 1

32 32 32 32

In
iti

al

Lo
ad

Lo

ad

Pr
e-

pr
oc

es
sin

g
Bi

tm
ap

O

pe
ra

tio
n

Po
st

-
pr

oc
es

sin
g

BM3CW’

32

Postprocessing: Resulting/Previous Code Word Type / Fill Counter?

32

St
or

e

32

Pr
e-

St

or
e

BM1CW’ BM2CW’

Fig. 3: Framework for Bitmap Processing Algorithms

to other processor families that use fixed instruction set ex-
tensions, Tensilica additionally provides an environment to
develop application-specific instructions using the Tensilica-
specific Hardware Description Language (HDL), which can
then be used like any other conventional assembler macro.
Due to the real hardware representation, the instructions can be
executed within a single clock cycle, or–if required–scheduled
over multiple cycles to improve the processor’s clock fre-
quency.

IV. INSTRUCTION FRAMEWORK

As mentioned, the novel idea of our approach is not
only to deploy HW/SW-CoDesign for database primitives as
instruction set extensions, but to provide a framework allowing
the implementation of a variety of state-of-the-art stateless
bitmap algorithms. In the following, we outline the building
blocks of an instruction set extension framework in order
to perform logical operations on compressed bitmaps. We
demonstrate the feasibility of the framework by using the three
bitmap encodings revisited in Section II.

A. Detailed View of the Framework

Figure 3 provides a detailed view of the overall framework
for logical operations on compressed bitmaps. It also provides
the complete set of instructions and their relationship. The
instruction set extension consists of two load instructions
LD128 cBM1 and LD128 cBM2 for both input bitmaps and
a combined process/store operation named BM cOP ST128,
with OP denoting the free parameter of the framework having
an impact on the three processing phases of Preprocessing,
Bitmap Operation, and Postprocessing. Merging the process
and store operations into a single instruction and adding an
internal pipeline structure using 4 cycles for the actual process-
ing turned out to be the optimum between execution time and
latency. Diving into more detail, the following list describes the
different phases of the framework and the associated pipeline
steps necessary to reduce the longest combinatorial path in the
processor.

Initial Load: Within the initial load pipeline stage, four
32 bit words of the compressed input bitmap stream 1 and
bitmap stream 2 are loaded from the local data memory 0 and
from local data memory 1, respectively.

Load: The memory access is aligned to 128-bit lines.
Hence, after loading the four 32 bit words from memory, the
data has to be reordered to ensure a continuous availability.

Preprocessing: In this cycle the first 32 bit word of
each bitmap stream is considered and a comparator checks
whether the words are literals, fills, or other compression
specific code words. Hence, it is decided if the input words
are overwritten with a changed fill, or the 128 bit input stream
is shifted to preserve the code word. The arrows within the
input registers of this pipeline stage in Figure 3 illustrate this
dependency. Obviously, this step is already depending on the
specific compression scheme.

Bitmap Operation: This stage performs the actual bit-
wise operation (defined by opID) of the two prepared code
words.

Postprocessing: The resulting code word from the pre-
vious cycle is written to the output bitmap stream. Again,
depending on the code word type, it has to be distinguished
among overwriting the previous word, or appending the result
to the output bitmap stream.

Prepare Store: Since we have a 128 bit memory inter-
face, we have to buffer multiple 32 bit words to reduce accesses
and the longest combinatorial path (critical path) to the local
memory. A 128 bit register holds the fully processed code
words.

Store: The final pipeline stage uses the wide memory
interface to store four 32 bit compressed code words simulta-
neously. The structure is designed in order to fully exploit the
capacity of the processor’s memory interfaces by loading and
storing 128 bit of data in every clock cycle.

In order to use the framework, the instruction-specific reg-
isters and states have to be initialized and set to the addresses
of the two input bitmaps as well as to the address of the
output bitmap. Additionally, the specific compression scheme
as well as the logical operation opID have to be specified. The
initialization goes hand in hand with a preliminary execution
of both load instructions and it also signals the start of the
pipelined code implementing the main body of the operation.
Since this main loop reflects the most time consuming part and
takes more than 95% of the total execution time, the number
of cycles per loop iteration should be reduced as much as
possible. For this reason, the process and store operations are
merged into one instruction. The resulting latency increase
by one clock cycle is negligible in terms of the overall
performance. The last phase contains further calls of the
BM cOP ST128 instruction at the end of the algorithm to
finish the pipeline. The following code snippet illustrates the
use of our framework within a C environment:

do {
LD128_cBM1(); LD128_cBM2();
BM_cOP_ST128();
BM_cOP_ST128();
BM_cOP_ST128();

} while(BM_cOP_ST128());

Final edited form was published in "International Conference on Application Specific Systems (ASAP), Architectures and Processors. London 2016", S. 50-57,
ISBN 978-1-5090-1503-0

http://dx.doi.org/10.1109/ASAP.2016.7760772

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

While the load instructions can be used for all implementations
of our framework, the BM cOP ST128 instruction needs to
be adapted to the specific bitmap encoding and processing
operation.

Within the first line, we combine the two load instruc-
tions to activate the two load-store units at the same time
and trigger a concurrent load of eight 32 bit code words
within one single clock cycle. Thereafter, the main instruction
BM cOP ST128 is called four times representing the four
corresponding pipeline stages. If the end of a bitmap is
reached, a zero is returned and the 4th call of BM cOP ST128
aborts the loop.

The complete do-while loop takes 6 clock cycles to
finish one iteration; 5 cycles are consumed by the bitmap-
specific instructions (1x load plus 4x process/store) and 1 cy-
cle by checking the condition of the while loop. However,
this extra cycle can be avoided by partially unrolling the
do-while loop. For this purpose, a for-loop is placed in
front of the do-while loop and compiling the final code
using at least the GCC optimization level −O2. The for-
loop would cover the minimal number of operations, e.g.,
when every word is entirely consumed in each step, and
the following do-while loop would catch cases, where the
minimal number of operations is not sufficient.

B. Exploiting the Framework

In order to demonstrate the feasibility of the introduced
compressed bitmap processing framework, we outline the
implementation of the logical AND, OR, and XOR operators
based on different compression schemes. To show the versa-
tility of our approach, we refer to the bitmap compression
schemes revisited in Section II, i.e., WAH, PLWAH, and COM-
PAX by adapting the Preprocessing, Bitmap Operation, and
Postprocessing step of the proposed framework.

Word-Aligned Hybrid (WAH): For the WAH compression
scheme, the Preprocessing step includes identifying the code
word types and modifying the fill counters. Here, we only need
to consider fills and literal. The first code word of each input
bitmap register is passed to the Bitmap Operation stage. If
multiple chunks of only zeros or ones are compressed in a fill,
the individual chunks are passed to the next stage successively;
the fill counter determines if the remaining code words located
in the input registers are shifted to the front. Within the
Bitmap Operation stage, the specific operator (identified by
the parameter opID) is applied, i.e., a real bitwise operation
is only necessary for two literals. The Postprocessing step
finally determines the resulting fill counter and, if possible,
merges consecutive code words. In contrast to the pure soft-
ware solution, our memory accesses are parallelized to store
four code words simultaneously.

Position List Word-Aligned Hybrid (PLWAH): Compared
to WAH, PLWAH code words exhibit sparse bits indicating
an additional literal after the specified number of fills. This
requires that shifting the code words in the input bitmap has
to be delayed by one clock cycle, since an extra cycle is used
to evaluate the sparse bit separately. The Bitmap Operation
step of the PLWAH implementation is identical to the WAH
approach. The Postprocessing again has to deal with sparse
bits when concatenating the resulting code words, so additional

checks are needed to identify sparse bits and add them to a
possible fill word.

COMPressed Adaptive indeX (COMPAX): Besides 0-fills
and literals used in WAH, COMPAX compressed bitmaps may
contain combinations of them, requiring a modified shifting
of the code words in the input registers because only one
section of a code word is passed to the Bitmap Operation
stage, if a hybrid code word is encountered. Therefore, the
Preprocessing step extracts the fills and literals from the Fill-
Literal-Fill and Literal-Fill-Literal code words, respectively,
and passes the sections individually to the next step. Again,
the Bitmap Operation step is identical to the WAH approach.
Postprocessing has to consider possibilities to concatenate
the code words to hybrid words.

V. EVALUATION

After presenting our bitmap instruction set extension
framework as well as multiple specific implementations, we
evaluate our approach by outlining the final processor includ-
ing the additional instructions. We evaluate the final processor
with respect to performance and power consumption and
compare the results to the base processor as well as to two
state-of-the-art x86 processors.

A. Evaluation Setup

In the following, we present the test data as well as our new
processor called BitiX (BITmap Instruction eXtension), to-
gether with the three different processors we want to compare
it with.

Test Data: As test data, we use bitmaps containing
N = 50, 000 bits. The number of bits is limited by the size
of the local data memories of our Tensilica processors. In the
future, we want to remove this limitation with an intelligent
data prefetcher. All implemented algorithms show a linear
complexity O(N) and scale with the size of the bitmaps.
We therefore fix the size for the remainder of this paper to
N = 50, 000 bits. However, more significant for our experi-
mental analysis is the distribution of set bits within the input
data, described by the bit density DBit. A bit density of
DBit = 1 corresponds to a bitmap containing only set bits,
DBit = 1/2 means every second bit is set, for DBit = 1/4
every forth bit, etc. We further assume a uniform distribution
of the bits. The final compression ratio depends on the bit
density as well as the efficiency of the chosen algorithm.

The BitiX Processor: Our final processor design, BitiX,
combines all three framework implementations for the pro-
cessing of different compression algorithms, each with the
operation AND, OR, and XOR. On the one hand, the entire
logic area of the BitiX processor comprises 0.443 mm2 and
increases by factor of 2.5x compared to the base processor.
Almost 20% of the additional area is occupied by additional
128 bit registers. This fact is justified because the new registers
allow SIMD processing and are necessary to implement the
pipelining within the instructions. On the other hand, the total
chip area increases only slightly because the most signifi-
cant area of the chip, the memory area, remains constant at
0.874 mm2. Our final processor performs with a maximum
frequency of 384 MHz.

Final edited form was published in "International Conference on Application Specific Systems (ASAP), Architectures and Processors. London 2016", S. 50-57,
ISBN 978-1-5090-1503-0

http://dx.doi.org/10.1109/ASAP.2016.7760772

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Reference Processors: In order to evaluate a software
version of the bitmap encodings and operations, we compare it
with three other processors. First, we use the basic LX5 Xtensa
processor (RISC) with no instruction set extensions, one load-
store unit, and 32-bit memory interfaces. The comparison with
this processor shows the direct improvements achieved by new
instructions of BitiX. This processor is also synthesized in
a 65 nm process and reaches 555 MHz. The difference in
frequency between RISC and BitiX results in longer critical
paths of BitiX, forcing the overall frequency to go down.
Both, RISC as well as BitiX are single core processors.

As a second processor, we choose a powerful Intel i7
extreme-edition (Intel i7-3960X) based on the Sandy-
Bridge architecture with 6 cores, 15 MB L3 cache, and a
maximum turbo frequency of 3.9 GHz. The processor is
manufactured using a 32 nm process.

Third, we use a highly energy-efficient mobile processor
(Intel M-5Y10) based on the Broadwell architecture with
2 cores, a 4 MB cache, a maximum frequency of 2 GHz,
and a manufacturing process of 14 nm. The Intel M-5Y10
exhibits a significantly lower performance than the Intel
i7-3960X but consumes about 29x less power (according
to Thermal Design Power (TDP)). For fair comparisons, we
located all data within the L3 cache and perform all measure-
ments using only a single core. The Intel processors execute
the same code as the RISC core.

As a summary, we compare all four processors in Table I.
The total area Atotal indicates the sum of the entire logic
area and the memory or cache area for all processors. As
can be seen, RISC and BitiX are much smaller than the
Intel multi-core processors, even with a larger manufacturing
process. Considering only the area of Intel’s single cores, the
two Xtensa processors are still significantly smaller.

Processor Tech.
[nm]

Atotal

[mm2]
fmax

[GHz]
Pmax[W]
@fmax

BitiX 65 1.32 0.384 0.089
RISC 65 1.05 0.555 0.055
Intel i7-3960X 32 435 3.9 32.2
Intel M-5Y10 14 82 2.0 3.0

TABLE I: Configuration of our BitiX processor and three
processors for comparison

B. Performance

For the Intel processors, we measure the wall-clock ex-
ecution time (gettimeofday()). For the RISC and the
BitiX processors, we obtain the cycle count of cycle accurate
simulations and divide that by the achieved frequency to get
the actual runtime.

In Figure 4, we show the AND operation for WAH,
PLWAH, and COMPAX on RISC and BitiX with varying bit
densities. We evaluated different bit density combinations from
0.000015 to 0.5 for two input bitmaps and found symmetric
behavior. Therefore, for simplicity, we modify the bit density
of both bitmaps similarly. A mirrored behavior appears at bit
densities greater than DBit = 0.5, since 1-fills with high bit
densities show similar behavior as 0-fills with low bit densities.
The COMPAX compression scheme is an exception, because

0,5 0,1 0,01 0,001 0,0001 0,00001
0,1

1

10

100

1000

Ex
ec

ut
io

n
Ti

m
e

[u
s]

Bit Density

RISC: WAH
RISC: PLWAH
RISC: COMPAX
BitiX: WAH
BitiX: PLWAH
BitiX: COMPAX

Fig. 4: Execution Time vs. Bit Density: AND operation of
WAH/PLWAH/COMPAX compressed bitmaps, comparison of
processors BitiX and RISC

it does not support 1-fills. The logical operation of COMPAX
compressed bitmaps stays constant for bit densities greater
than DBit = 0.5. As shown in Figure 4, the execution time
decreases for all algorithms for lower bit densities, i.e., for
enhanced compression ratios. The more zeros occur in bitmaps
during compression, the more 0-fills are merged together,
resulting in less code words, less iterations during processing,
and in a shorter execution time. When considering bit densities
in the range of 1/100 ≤ DBit ≤ 1/10, the execution times
remain relatively constant for the two processors. In such cases,
we achieve our maximum speedup of BitiX compared to
RISC for WAH, PLWAH, and COMPAX of 39.2x, 75.9x, and
97.7x, respectively. Please note, we only want to compare the
implementations and not the algorithms themselves, as system
administrators have to decide on the best algorithm depending
on their requirements for space and computation.

The WAH and PLWAH processing show very similar
execution times. Nevertheless, PLWAH performs a little worse
than WAH because additional operations are required to merge
them with 0- and 1-fills due to the available sparse code words
of PLWAH. However, this effect only impacts the execution
of the RISC processor. Since the BitiX processor fuses the
AND operation into a single instruction, only the number of
code words affects the execution time. COMPAX exhibits the
best performance at very low bit densities. This can be traced
back to a better compression ratio due to more advanced code
words and, therefore, a lower execution time.

Table II shows the average performance of the four pro-
cessors for bitmap processing. One can see that the BitiX
processor always exhibits the best execution times without
variations at different logical operators since the new instruc-
tions are independent from the input values. In contrast, the
RISC processor as well as the Intel processors rely on a pure
software solution with slight differences in handling the results.
For instance, the OR operation of a literal with a 1-fill leads
directly to a 1-fill. However, performing the XOR, a more time
consuming logical operation is required to switch all bits.

When looking at the averaged results of the AND operation
of WAH compressed bitmaps in Table II, the BitiX pro-
cessor outperforms the Intel i7-3960X and the Intel
M-5Y10 of almost a factor of 1.3x and 3.3x, respectively.

Final edited form was published in "International Conference on Application Specific Systems (ASAP), Architectures and Processors. London 2016", S. 50-57,
ISBN 978-1-5090-1503-0

http://dx.doi.org/10.1109/ASAP.2016.7760772

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Processor WAH PLWAH COMPAX
AND OR XOR AND OR XOR AND OR XOR

RISC 59.68 48.27 49.20 115.04 110.45 108.45 184.23 202.38 192.14
BitiX 2.69 2.69 2.69 2.75 2.75 2.75 3.16 3.16 3.16
Intel i7-3960X 3.53 3.07 2.77 6.39 6.38 6.51 15.32 14.62 14.38
Intel M-5Y10 8.87 6.94 7.50 13.26 12.98 20.89 34.04 37.07 39.02

TABLE II: Execution Time [us] averaged over bit densities from 0.000015 to 0.5

0,5 0,1 0,01 0,001 0,0001 0,00001
0,01

0,1

1

10

100

Ex
ec

ut
io

n
Ti

m
e

[u
s]

Bit Density

BitiX
Intel i7
Intel M

(a) WAH

0,5 0,1 0,01 0,001 0,0001 0,00001
0,01

0,1

1

10

100

Ex
ec

ut
io

n
Ti

m
e

[u
s]

Bit Density

BitiX
Intel i7
Intel M

(b) PLWAH

0,5 0,1 0,01 0,001 0,0001 0,00001
0,01

0,1

1

10

100

Ex
ec

ut
io

n
Ti

m
e

[u
s]

Bit Density

BitiX
Intel i7
Intel M

(c) COMPAX

Fig. 5: Execution Time vs. Bit Density: comparison of BitiX processor and Intel cores, AND operation

However, when considering very low bit densities in Figure 5a,
the Intel processors outperform BitiX and benefit from an up
to 10x higher clock frequency as well as from a straightforward
algorithm with an effective utilization of branch predictions.
Especially the Intel M-5Y10 includes the advanced branch
prediction of the Intel Broadwell architecture, leading to the
surprising performance results in Figure 5b.

We observe a typical trade-off of our chosen stateless
bitmap processing algorithms regarding efficiency and perfor-
mance. While the compression ratio increases when using code
words like PLWAH or COMPAX, the processors require a
longer execution time. Figure 5 shows that relationship and, in
contrast to this, that the BitiX processor behaves differently.
The specialized instructions allow a similar processing on
different coding schemes as long as no additional memory
access is needed. Hence, the performance of BitiX is largely
independent of the algorithms.

C. Energy and Power Consumption

We obtain the power consumption of our Xtensa processors
for the given algorithms by analyzing the switching activities
of the processor. Thereby, the resulting power per cycle is
summed up and averaged over the total execution time of
the chosen algorithm. We measure the power of the Intel
processors with the integrated Running Average Power Limit
(RAPL) counter, only measuring the core power (PP0). As
expected, our additional instructions in the BitiX processor
lead to a higher power consumption than the RISC processor
(Table III). However, BitiX consumes 29.2x to 308.8x less
power than the Intel processors.

The power consumption shows the average power usage,
which is important for the system design. However, the energy
usage of an operation should be favored when comparing
the execution because it also depends on the runtime, e.g.,
even with a high power consumption, an operation could be
highly energy-efficient by being faster than others. In our
test scenario, the BitiX processor consumes 0.16 uJ for a

Processor WAH PLWAH COMPAX

RISC 0.058 0.057 0.056
BitiX 0.096 0.078 0.075
Intel i7-3960X 24.09 15.15 19.90
Intel M-5Y10 2.28 2.58 2.57

TABLE III: Power Consumption [W] averaged over bit densi-
ties from 1/2 to 1/65536, AND Operation

WAH-AND operation. For the same operation, the energy-
efficient Intel M-5Y10 uses 20.22 uJ, an almost 130x
higher energy consumption while the Intel i7-3960X
processor’s energy is at 85.04 uJ more than 530x higher.

VI. RELATED WORK

Only few works concentrate on accelerating database al-
gorithms by introducing additional and highly specialized
hardware structures and instructions. The well-known instruc-
tion set extensions of general-purpose Intel processors like
MMX, SSE, and FMA [12] were developed to deal with
wider registers and data parallelism. Slingerland et al. [13]
provide a list of such application-specific instruction sets.
Furthermore, Schlegel et al. [14] used the STTNI extension
of Intel SSE4.2 to improve the performance of sorted-set
intersection algorithms. Besides that, in our previous work
we provided a completely new instruction set for enhancing
sorted-set and sorting applications [6] as well as primitive
hashing operations [15]. We achieved a single-core speedup of
up to 180x compared to modern x86 processors. The improve-
ments result from the massive single-instruction, multiple-data
(SIMD) processing. Research about query processing on low-
energy Multiprocessor System-on-Chips has been presented
in [16]. The presented platform could serve as a basis to
integrate application-specific processors that provide a very
low power consumption while reaching high performances.

In the field of bitmap indices, processing on bitmaps with
new instructions was only mentioned but–to the best of our
knowledge–not implemented. Firstly, Wu et al. [17] identified

Final edited form was published in "International Conference on Application Specific Systems (ASAP), Architectures and Processors. London 2016", S. 50-57,
ISBN 978-1-5090-1503-0

http://dx.doi.org/10.1109/ASAP.2016.7760772

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

simple compression algorithms without data dependencies for
acceleration. Later, the developers of PLWAH [2] showed the
benefit of the functions popcount and bitscan provided by x86
processors. The instructions count the set bits and determine
the position of the first set least significant bits (LSB) within
one clock cycle. Thus, PLWAH code words with the enclosed
sparse bits benefit from the instructions.

From the background of observing increasing network
traffic in real time, Fusco et al. [18] investigated WAH and
PLWAH bitmap indexing algorithms on GPUs. Their used
NVIDIA GPU achieves a speed of around 40 GBit/s for WAH
and, thereby, outperforms the Intel i7 CPU by a factor of 5.

Another framework for bitmap indices with variable
aligned lengths was presented by Guzun et al. [19]. Primarily,
their performance improvement results from a previous pro-
filing of the input bitmap that allows choosing an appropriate
compression encoding scheme. Further, the work includes an
input tuning parameter to select either a high compression
ratio or improved execution time. In summary, their proposed
framework executes queries that apply a logical AND on the
bitmaps and are 30% faster.

VII. CONCLUSION AND FUTURE WORK

In this paper, we evaluated the potential of an application-
specific instruction set extension for compressed bitmap index
processing. We discussed, which types of bitmap compres-
sion are suited for hardware acceleration and that the best
compression algorithms have much in common. We could
derive a common framework, which makes it relatively easy
to implement these bitmap operations as hardware instructions.
Finally, we chose three different bitmap encodings for which
we implemented three bitmap operations each. We achieved
performance results that keep up with modern x86 processors
and show enormous power savings. Based on our feasibility
analysis, there are two ways to integrate our bitmap instruction
approach into larger systems:

Accelerator Approach: Our presented approach can be
used to build a small specialized bitmap processing core (as
shown in this paper). We also could add previously proposed
sorted-set [6] and hashing instructions [15] to the processor by
adding specialized cores. One or more of these cores fit next
to bigger cores on the same chip to establish a heterogeneous
Multiprocessor System-on-Chip (MPSoC). Operations can be
offloaded to the small more energy-efficient cores, while at the
same time, leaving the bigger cores to work on other tasks.

Extension Approach: The presented idea of our frame-
work can also be used to implement instruction set extensions
for bitmap processing directly in larger general purpose cores.
This approach was applied before, for some instructions like
hashing (e.g., PEXT) or encryption (e.g., AES) [12]. Hardware
vendors could speed up bitmap processing and therefore query
processing for large databases in general by extending their
processors with our proposed instructions. Here, the integration
would only require changes in the compilers to support the
specialized instructions.

Both approaches would help to prevent dark silicon [5] by
using parts of the chip only for specialized operations. In any
case, we have demonstrated how to build a generic instruction
set extension for a wide variety of state-of-the-art stateless

compression algorithms and shown the general applicability
and extreme relevance of HW/SW-CoDesign for efficient query
processing in database systems.

VIII. ACKNOWLEDGMENTS

This work has been supported in part by the German
Research Foundation (DFG) within the Cluster of Excellence
1056 “Center for Advancing Electronics Dresden”, the Col-
laborative Research Center 912 “Highly Adaptive Energy-
Efficient Computing”, is partially supported by “Ultra-Low
Power Technologies and Memory Architectures for IoT”
(692519 PRIME), and 610456 Euroserver. Further, we would
like to thank Synopsys and Cadence for software and IP.

REFERENCES

[1] G. Antoshenkov, “Byte-aligned Bitmap Compression,” in Proceedings
of DCC, Washington, DC, USA, 1995.

[2] F. Deliège and T. B. Pedersen, “Position List Word Aligned Hybrid:
Optimizing Space and Performance for Compressed Bitmaps,” in Pro-
ceedings of EDBT, 2010.

[3] F. Fusco, M. P. Stoecklin, and M. Vlachos, “NET-FLi: On-the-fly
Compression, Archiving and Indexing of Streaming Network Traffic,”
Proceedings of VLDB Endowment, 2010.

[4] W. Andrzejewski and R. Wrembel, “GPU-WAH: Applying GPUs to
Compressing Bitmap Indexes with Word Aligned Hybrid,” in Proceed-
ings of DEXA, 2010.

[5] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger, “Dark Silicon and the End of Multicore Scaling,” in ISCA,
2011.

[6] O. Arnold, S. Haas, G. Fettweis, B. Schlegel, T. Kissinger, and
W. Lehner, “An Application-Specific Instructions Set for Accelerating
Set-Oriented Database Primitives,” in Proceedings of SIGMOD, 2014.

[7] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz, “Understanding Sources
of Inefficiency in Gernal-Purpose Chips,” in Proceedings of ISCA, 2010.

[8] M. Bassiouni, “Data Compression in Scientific and Statistical
Databases,” IEEE Transactions on Software Engineering, 1985.

[9] O. Kaser, D. Lemire, and K. Aouiche, “Histogram-aware Sorting for
Enhanced Word-aligned Compression in Bitmap Indexes,” in Proceed-
ings of DOLAP, 2008.

[10] K. Wu, E. J. Otoo, and A. Shoshani, “An Efficient Compression Scheme
for Bitmap Indices,” ACM Transactions on Database Systems, Tech.
Rep., 2004.

[11] A. Colantonio and R. D. Pietro, “CONCISE: Compressed ’n’ Compos-
able Integer Set,” CoRR, 2010.

[12] Intel 64 and IA-32 Architectures Optimization Reference Manual, Intel
Corp., March 2014.

[13] N. T. Slingerland and A. J. Smith, “Multimedia extensions for general
purpose microprocessors: a survey,” Microprocessors and Microsystems,
vol. 29, 2005.

[14] B. Schlegel, T. Willhalm, and W. Lehner, “Fast Sorted-Set Intersection
using SIMD Instructions,” in Proceedings of ADMS, 2011.

[15] O. Arnold, S. Haas, G. Fettweis, B. Schlegel, T. Kissinger, T. Karnagel,
and W. Lehner, “HASHI: An Application-Specific Instruction Set Ex-
tension for Hashing.” in ADMS, 2014.

[16] A. Ungethüm, D. Habich, T. Karnagel, W. Lehner, N. Asmussen,
M. Völp, B. Nöthen, and G. Fettweis, “Query Processing on Low-
Energy Many-Core Processors,” in Proceedings of HardBD, 2015.

[17] K. Wu, E. J. Otoo, A. Shoshani, and H. Nordberg, “Notes on design
and implementation of compressed bit vectors,” in Technical Report
LBNL/PUB-3161, 2001.

[18] F. Fusco, M. Vlachos, X. Dimitropoulos, and L. Deri, “Indexing
million of packets per second using gpus,” in Proceedings of the 2013
Conference on Internet Measurement Conference (IMC), 2013.

[19] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin, “A Tunable Compres-
sion Framework for Bitmap Indices,” in Proceedings of ICDE, 2014.

Final edited form was published in "International Conference on Application Specific Systems (ASAP), Architectures and Processors. London 2016", S. 50-57,
ISBN 978-1-5090-1503-0

http://dx.doi.org/10.1109/ASAP.2016.7760772

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	ADPBC3B.tmp
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint) /
	This is a self-archiving document (accepted version):
	Sebastian Haas, Tomas Karnagel, Oliver Arnold, Erik Laux, Benjamin Schlegel, Gerhard Fettweis, Wolfgang Lehner

