7 research outputs found

    Comparative study of chemical composition and succinic acid quantitave analysis in different origin of Amber.

    No full text
    Work title: Comparative study of chemical composition and succinic acid quantitave analysis in different origin of Amber. Laurynas Jarukas masterβ€˜s thesis/ supervised by Prof. Dr. Liudas Ivanauskas; Lithuanian University of Health Sciences, Faculty of Pharmacy, Department of Analitic and Toxicological chemistry - Kaunas, 2017. Aim: To analize chemical composition in different origin of Amber extracts and evaluate quantity of succinic acid. Objectives: 1. According to scientific data, choose the most suitable gass chromatgraphy – mass spectroscopy method to analyse chemical composition of Amber and succinic acid quantity. 2. Evaluate chemical composition in different origin of Amber extracts and investigate succinic acid quantity by selected gass chromatography – mass spectroscopy method. 3. Compare chemical composition between different origin of Amber samples and scientific databases. 4. Compare the quantitave of succinic acid between different origin of Amber samples. Object: Different geographical origin of fossil resins: Baltic amber, Ukrainian amber, Madagascar copal, Colombia copal, Sumatra amber. Investigations were carried out with UAB \"Alex amber\" amber samples, which were acquired in the period 2012-2015 for jewelry products. According to the investigate objectives, research includes small fractions of different origin and age amber waste. Methods: gas chromatography - mass spectrometry method. For the quantitative determination of the succinic acid applied derivatization process. Results and conclusions: After the five different origin and age of the fossil resin extracts chemical analysis, chromatography show prevailing of low molecular weight aromatic hydrocarbons: monoterpenes, sesquiterpenes and other diterpenoid volatile compounds. Different origins of Amber contain various in chemical composition. Succinic acid was determined by qualitative analysis using the derivatization process. The quantitative analysis of succinic acid, estimated that in comparison with other fossil resins, the Ukrainian amber contains the most quantity of succinic acid (10,65 Β΅g/ml)

    Development and Evaluation of Ginkgo biloba L. Extract Loaded into Carboxymethyl Cellulose Sublingual Films

    No full text
    Oral bioavailability of flavonoids, including G. biloba extract, is limited due to their chemical complexity, which determines slow dissolution in vitro behavior of the extract. The overall research objective was to compare the effect of increasing freeze-dried G. biloba extract (GFD) concentrations in carboxymethyl cellulose (CMC) films on their mechanical properties, release profile of flavonoid glycosides, stability and disintegration time. Physicochemical evaluation of films was performed by SEM and FTIR. The mechanical properties and in vitro release profile of flavonoid glycosides from the prepared films were characterized in the study. The higher elongation at break and tensile strength values, quick release of flavonoids and good stability were observed in formulation, coded FRG—15 (the film contained 0.4 g of GFD, 0.3 g of glycerol and 2 g of 2% CMC), (p < 0.05). Dissolution rate tests showed that approximately 85% of loaded flavonoid glycosides had been released; the release profile of flavonoid glycosides from FRG-15 had levelled off after only 15 min. The results could lay the groundwork for further studies, concerning the development of sublingual films as G. biloba extract-based dosage forms, which might increase the multifunctional properties and pharmacological activity closer to the desired level

    ΠŸΡ–Π΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° Π·Ρ€Π°Π·ΠΊΡ–Π² Π±ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— кислоти ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎΡ— Π· Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— сировини Ρ– ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° оптимізація отримання ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… для Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎ-мас-спСктромСтричного Π°Π½Π°Π»Ρ–Π·Ρƒ

    No full text
    This study focused on bio-based succinic acid sample preparation and derivatization conditions optimization using GC-MS analytical method. Succinic acid, the precursor of a wide range bio-compounds, especially it is important in accumulation of mitochondrial metabolite succinate (citric acid cycle) and during ischemia controls reperfusion injury through mitochondrial reactive oxygen production. Accurate determination of analytes is the key in metabolomics to use as low molecular biomarkers in case to improve diagnostic methods.Methods. Gas chromatography-mass spectrometry (GC-MS) method. For the quantitative determination of the succinic acid applied derivatization process by silylation using -bis- (trimethylsilyl) -trifluoroacetamide (BSTFA).Results. The derivatization agent BSTFA, the derivatization time of 3-4 hours and derivatization temperature at 70 Β°C were selected as the optimal derivatization condition for quantification of succinic acid by GΠ‘/MS in biological samples. The results show that GC-MS SIM method with evaporation was the most effective to quantify succinate in biological samples after ischemia/reperfusion injury. Selected ion monitoring (SIM) allowed to monitor a subset of fragments with their related mass values in a certain retention time (RT) range for a set of targets.Conclusions. DC – MS has several advantages for measurements of succinate concentration in small kidney tissue samples (lyophilized mitochondria). The method can be applied in small pieces of tissue - biopy samples, tissues from various organsΠ’ этом исслСдовании основноС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² янтарной кислоты ΠΈΠ· биологичСского ΡΡ‹Ρ€ΡŒΡ ΠΈ условиям ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ получСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π“Π₯-МБ. Янтарная кислота, ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊ биологичСских соСдинСний ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°, особСнно Π²Π°ΠΆΠ½Π° для накоплСния ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚Π° ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ сукцината (Ρ†ΠΈΠΊΠ» Π»ΠΈΠΌΠΎΠ½Π½ΠΎΠΉ кислоты), Π° Π²ΠΎ врСмя ишСмии ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ€Π΅ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ посрСдством продуцирования ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ кислорода. Π’ΠΎΡ‡Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ вСщСства для Π°Π½Π°Π»ΠΈΠ·Π° являСтся ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹ΠΌ Π² ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΎΠΌΠΈΠΊΠΈ для использования Π² качСствС низкомолСкулярных Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² Π² случаС ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ диагностичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ².ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄ Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎ-масс-спСктромСтрии (Π“Π₯-МБ). Для количСствСнного опрСдСлСния примСняСмого процСсса Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ янтарной кислоты ΠΏΡƒΡ‚Π΅ΠΌ силилирования с использованиСм -бис- (тримСтилсилил) -Ρ‚Ρ€ΠΈΡ„Ρ‚ΠΎΡ€Π°Ρ†Π΅Ρ‚Π°ΠΌΠΈΠ΄Π° (BSTFA).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π”Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ‚ΠΎΡ€ BSTFA, врСмя Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ 3-4 часа ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ 70 Β°C Π±Ρ‹Π»ΠΈ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ Π² качСствС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условий процСсса для количСствСнного опрСдСлСния янтарной кислоты ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π“Π₯-МБ Π² биологичСских ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ…. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π“Π₯-МБ Π‘Π”Π˜ с испарСниСм Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивСн для количСствСнного опрСдСлСния сукцината Π² биологичСских ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… послС ишСмии/Ρ€Π΅ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поврСТдСния. Π‘Π΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² (Π‘Π”Π˜) ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ подмноТСство Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² со связанными значСниями массы Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ удСрТивания (RT) для Π½Π°Π±ΠΎΡ€Π° Ρ†Π΅Π»Π΅ΠΉ.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π“Π₯-МБ ΠΈΠΌΠ΅Π΅Ρ‚ нСсколько прСимущСств для измСрСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ сукцината Π² Π½Π΅Π±ΠΎΠ»ΡŒΡˆΠΈΡ… ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΏΠΎΡ‡ΠΊΠΈ (Π»ΠΈΠΎΡ„ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ). ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ Π² Π½Π΅Π±ΠΎΠ»ΡŒΡˆΠΈΡ… кусочках Ρ‚ΠΊΠ°Π½ΠΈ - ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ Π±ΠΈΠΎΠΏΠΈΠΈ, Ρ‚ΠΊΠ°Π½ΠΈ ΠΈΠ· Ρ€Π°Π·Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΎΠ²Π£ Ρ†ΡŒΠΎΠΌΡƒ дослідТСнні основна ΡƒΠ²Π°Π³Π° Π±ΡƒΠ»Π° ΠΏΡ€ΠΈΠ΄Ρ–Π»Π΅Π½Π° отримання Π·Ρ€Π°Π·ΠΊΡ–Π² Π±ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— кислоти Π· Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— сировини Ρ– ΡƒΠΌΠΎΠ² ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— отримання ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… Π· використанням ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π“Π₯-МБ. Π‘ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²Π° кислота, ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΠΈΠΊ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρƒ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… сполук, особливо Π²Π°ΠΆΠ»ΠΈΠ²Π° для накопичСння ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Ρ‚Ρƒ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–ΠΉ сукцината (Ρ†ΠΈΠΊΠ» Π»ΠΈΠΌΠΎΠ½Π½ΠΎΡ— кислоти), Π° ΠΏΡ–Π΄ час Ρ–ΡˆΠ΅ΠΌΡ–Ρ— ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽΡ” Ρ€Π΅ΠΏΠ΅Ρ€Ρ„ΡƒΠ·Ρ–ΠΉΠ½Π΅ пошкодТСння Π·Π° допомогою продукування ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ кисню. Π’ΠΎΡ‡Π½Π΅ визначСння Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ для Π°Π½Π°Π»Ρ–Π·Ρƒ Ρ” ΠΊΠ»ΡŽΡ‡ΠΎΠ²ΠΈΠΌ Π² ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΎΠΌΡ–Ρ†Ρ– для використання Π² якості Π½ΠΈΠ·ΡŒΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΈΡ… Π±Ρ–ΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ–Π² Π² Ρ€Π°Π·Ρ– ΠΏΠΎΠ»Ρ–ΠΏΡˆΠ΅Π½Π½Ρ діагностичних ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π².ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ Π³Π°Π·ΠΎΠ²ΠΎΡ— Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎ-мас-спСктромСтрії (Π“Π₯-МБ). Для ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΠ³ΠΎ визначСння використаного процСсу Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†Ρ–Ρ— Π±ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— кислоти ΡˆΠ»ΡΡ…ΠΎΠΌ ΡΠΈΠ»Ρ–Π»ΡŽΠ²Π°Π½Π½Ρ Π· використанням -біс- (тримСтилсиліл) -Ρ‚Ρ€ΠΈΡ„Ρ‚ΠΎΡ€Π°Ρ†Π΅Ρ‚Π°ΠΌΡ–Π΄Π° (BSTFA).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π”Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ‚ΠΎΡ€ BSTFA, час Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†Ρ–Ρ— 3-4 Π³ΠΎΠ΄ΠΈΠ½ΠΈ Ρ– Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†Ρ–Ρ— 70 Β°C Π±ΡƒΠ»ΠΈ ΠΎΠ±Ρ€Π°Π½Ρ– Π² якості ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… ΡƒΠΌΠΎΠ² процСсу для ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΠ³ΠΎ визначСння Π±ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— кислоти ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π“Π₯-МБ Π² Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΠ°Ρ…. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΏΠΎΠΊΠ°Π·ΡƒΡŽΡ‚ΡŒ, Ρ‰ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π“Π₯-МБ Π‘Π”Π† Π· випаровуванням Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ для ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΠ³ΠΎ визначСння сукцината Π² Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΠ°Ρ… після Ρ–ΡˆΠ΅ΠΌΡ–Ρ— / Ρ€Π΅ΠΏΠ΅Ρ€Ρ„ΡƒΠ·Ρ–ΠΉΠ½ΠΎΠ³ΠΎ ΡƒΡˆΠΊΠΎΠ΄ΠΆΠ΅Π½Π½Ρ. Π‘Π΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Π΅ дСтСктування Ρ–ΠΎΠ½Ρ–Π² (Π‘Π”Π†) Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽΠ²Π°Ρ‚ΠΈ ΠΏΡ–Π΄ΠΌΠ½ΠΎΠΆΠΈΠ½Π° Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ–Π² Π·Ρ– Π·Π²'язаними значСннями маси Π² ΠΏΠ΅Π²Π½ΠΎΠΌΡƒ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ– часу утримування (RT) для Π½Π°Π±ΠΎΡ€Ρƒ Ρ†Ρ–Π»Π΅ΠΉ.Висновки. Π“Π₯-МБ ΠΌΠ°Ρ” ΠΊΡ–Π»ΡŒΠΊΠ° ΠΏΠ΅Ρ€Π΅Π²Π°Π³ для Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½Ρ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— сукцинату Π² Π½Π΅Π²Π΅Π»ΠΈΠΊΠΈΡ… Π·Ρ€Π°Π·ΠΊΠ°Ρ… Ρ‚ΠΊΠ°Π½ΠΈΠ½ Π½ΠΈΡ€ΠΊΠΈ (Π»Ρ–ΠΎΡ„Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½Ρ– ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Ρ—). ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ застосований Π² Π½Π΅Π²Π΅Π»ΠΈΠΊΠΈΡ… ΡˆΠΌΠ°Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ - Π·Ρ€Π°Π·ΠΊΠΈ Π±Ρ–ΠΎΠΏΡ–Ρ—, Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Π· Ρ€Ρ–Π·Π½ΠΈΡ… ΠΎΡ€Π³Π°Π½Ρ–

    Optimization and Validation of the GC/FID Method for the Quantification of Fatty Acids in Bee Products

    No full text
    To the best of our knowledge, so far, no study has been conducted about the comparison of the total fatty acid concentration in the four bee products (honey, bee pollen, bee bread, and propolis) collected from Lithuania. Therefore, we aimed to optimize the derivatization parameters and to investigate a simple and sensitive gas chromatography-flame ionization detection (GC-FID) method to determine fatty acids. The optimal derivatization parameters were used to analyze fatty acids in the bee products. Regarding sample preparation, three derivatization parameters were compared (temperature and extraction time with BF3/MeOH reagent) in order to obtain a high amount of the total fatty acids of interest from the fatty acid methyl ester (FAME) standard. The results showed that the highest total yield of fatty acids was conducted by using the conventional heating process at 70 °C for 90 min. Under optimal conditions, there was obtained excellent linearity for fatty acids with determination coefficients of r2 > 0.9998. The LODs and LOQs ranged from 0.21 to 0.54 µg/mL and 0.63 to 1.63 µg/mL, respectively. This method has been successfully applied to the qualitative analysis of fatty acids in bee products. The above findings might provide a scientific basis for evaluating the nutritional values of bee products

    Effective Isolation of Picrocrocin and Crocins from Saffron: From HPTLC to Working Standard Obtaining

    No full text
    Saffron is widely cultivated and used as a spice. Recently published data on the chemical composition and pharmacological potential of saffron determine its use in pharmacy and medicine. The proposed high-performance thin-layer chromatography (HPTLC) method allows good separation of 11 analytes. The saffron quality (Iran, Ukraine, Spain, Morocco samples) assessment was based on the European Pharmacopoeia monograph and ISO 3632. The HPTLC method for the safranal, crocin, and picrocrocin quantification was proposed and validated. The crocins content in Ukrainian saffron was from 17.80% to 33.25%. Based on qualitative and quantitative assessment results, the saffron sample from Zaporizhzhia (Ukraine) had the highest compounds content and was chosen to obtain the working standards of picrocrocin and crocins (trans-4GG, trans-2G, trans-3Gg) by preparative chromatography. The compounds were isolated from lyophilized extract of saffron using a Symmetry Prep C18 column (300 × 19 mm × 7 µm), and identified by spectroscopic techniques (HPLC-DAD, UPLC-ESI-MS/MS). The purity of crocins and picrocrocin was more than 97%. A novel method proposed to obtain working standards is simple and reproducible for the routine analysis of saffron quality control

    ΠŸΡ–Π΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠ° Π·Ρ€Π°Π·ΠΊΡ–Π² Π±ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— кислоти ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΎΡ— Π· Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— сировини Ρ– ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π° оптимізація отримання ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… для Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎ-мас-спСктромСтричного Π°Π½Π°Π»Ρ–Π·Ρƒ

    No full text
    This study focused on bio-based succinic acid sample preparation and derivatization conditions optimization using GC-MS analytical method. Succinic acid, the precursor of a wide range bio-compounds, especially it is important in accumulation of mitochondrial metabolite succinate (citric acid cycle) and during ischemia controls reperfusion injury through mitochondrial reactive oxygen production. Accurate determination of analytes is the key in metabolomics to use as low molecular biomarkers in case to improve diagnostic methods.Methods. Gas chromatography-mass spectrometry (GC-MS) method. For the quantitative determination of the succinic acid applied derivatization process by silylation using -bis- (trimethylsilyl) -trifluoroacetamide (BSTFA).Results. The derivatization agent BSTFA, the derivatization time of 3-4 hours and derivatization temperature at 70 Β°C were selected as the optimal derivatization condition for quantification of succinic acid by GΠ‘/MS in biological samples. The results show that GC-MS SIM method with evaporation was the most effective to quantify succinate in biological samples after ischemia/reperfusion injury. Selected ion monitoring (SIM) allowed to monitor a subset of fragments with their related mass values in a certain retention time (RT) range for a set of targets.Conclusions. DC – MS has several advantages for measurements of succinate concentration in small kidney tissue samples (lyophilized mitochondria). The method can be applied in small pieces of tissue - biopy samples, tissues from various organsΠ’ этом исслСдовании основноС Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅ Π±Ρ‹Π»ΠΎ ΡƒΠ΄Π΅Π»Π΅Π½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ΠΈΡŽ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² янтарной кислоты ΠΈΠ· биологичСского ΡΡ‹Ρ€ΡŒΡ ΠΈ условиям ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ получСния ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½Ρ‹Ρ… с использованиСм ΠΌΠ΅Ρ‚ΠΎΠ΄Π° Π“Π₯-МБ. Янтарная кислота, ΠΏΡ€Π΅Π΄ΡˆΠ΅ΡΡ‚Π²Π΅Π½Π½ΠΈΠΊ биологичСских соСдинСний ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°, особСнно Π²Π°ΠΆΠ½Π° для накоплСния ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΡ‚Π° ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΉ сукцината (Ρ†ΠΈΠΊΠ» Π»ΠΈΠΌΠΎΠ½Π½ΠΎΠΉ кислоты), Π° Π²ΠΎ врСмя ишСмии ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΡƒΠ΅Ρ‚ Ρ€Π΅ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ²Ρ€Π΅ΠΆΠ΄Π΅Π½ΠΈΠ΅ посрСдством продуцирования ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ кислорода. Π’ΠΎΡ‡Π½ΠΎΠ΅ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ вСщСства для Π°Π½Π°Π»ΠΈΠ·Π° являСтся ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹ΠΌ Π² ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΎΠΌΠΈΠΊΠΈ для использования Π² качСствС низкомолСкулярных Π±ΠΈΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€ΠΎΠ² Π² случаС ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ диагностичСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ².ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄ Π³Π°Π·ΠΎΠ²ΠΎΠΉ Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎ-масс-спСктромСтрии (Π“Π₯-МБ). Для количСствСнного опрСдСлСния примСняСмого процСсса Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ янтарной кислоты ΠΏΡƒΡ‚Π΅ΠΌ силилирования с использованиСм -бис- (тримСтилсилил) -Ρ‚Ρ€ΠΈΡ„Ρ‚ΠΎΡ€Π°Ρ†Π΅Ρ‚Π°ΠΌΠΈΠ΄Π° (BSTFA).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π”Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ‚ΠΎΡ€ BSTFA, врСмя Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ 3-4 часа ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†ΠΈΠΈ 70 Β°C Π±Ρ‹Π»ΠΈ Π²Ρ‹Π±Ρ€Π°Π½Ρ‹ Π² качСствС ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… условий процСсса для количСствСнного опрСдСлСния янтарной кислоты ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π“Π₯-МБ Π² биологичСских ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ…. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π“Π₯-МБ Π‘Π”Π˜ с испарСниСм Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ эффСктивСн для количСствСнного опрСдСлСния сукцината Π² биологичСских ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… послС ишСмии/Ρ€Π΅ΠΏΠ΅Ρ€Ρ„ΡƒΠ·ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ поврСТдСния. Π‘Π΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ΅ Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΈΠΎΠ½ΠΎΠ² (Π‘Π”Π˜) ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ подмноТСство Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚ΠΎΠ² со связанными значСниями массы Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΌ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ удСрТивания (RT) для Π½Π°Π±ΠΎΡ€Π° Ρ†Π΅Π»Π΅ΠΉ.Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π“Π₯-МБ ΠΈΠΌΠ΅Π΅Ρ‚ нСсколько прСимущСств для измСрСния ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ сукцината Π² Π½Π΅Π±ΠΎΠ»ΡŒΡˆΠΈΡ… ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… Ρ‚ΠΊΠ°Π½Π΅ΠΉ ΠΏΠΎΡ‡ΠΊΠΈ (Π»ΠΈΠΎΡ„ΠΈΠ»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΌΠΈΡ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€ΠΈΠΈ). ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ Π² Π½Π΅Π±ΠΎΠ»ΡŒΡˆΠΈΡ… кусочках Ρ‚ΠΊΠ°Π½ΠΈ - ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ Π±ΠΈΠΎΠΏΠΈΠΈ, Ρ‚ΠΊΠ°Π½ΠΈ ΠΈΠ· Ρ€Π°Π·Π½Ρ‹Ρ… ΠΎΡ€Π³Π°Π½ΠΎΠ²Π£ Ρ†ΡŒΠΎΠΌΡƒ дослідТСнні основна ΡƒΠ²Π°Π³Π° Π±ΡƒΠ»Π° ΠΏΡ€ΠΈΠ΄Ρ–Π»Π΅Π½Π° отримання Π·Ρ€Π°Π·ΠΊΡ–Π² Π±ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— кислоти Π· Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΡ— сировини Ρ– ΡƒΠΌΠΎΠ² ΠΎΠΏΡ‚ΠΈΠΌΡ–Π·Π°Ρ†Ρ–Ρ— отримання ΠΏΠΎΡ…Ρ–Π΄Π½ΠΈΡ… Π· використанням ΠΌΠ΅Ρ‚ΠΎΠ΄Ρƒ Π“Π₯-МБ. Π‘ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²Π° кислота, ΠΏΠΎΠΏΠ΅Ρ€Π΅Π΄Π½ΠΈΠΊ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ³ΠΎ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρƒ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… сполук, особливо Π²Π°ΠΆΠ»ΠΈΠ²Π° для накопичСння ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»Ρ–Ρ‚Ρƒ ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–ΠΉ сукцината (Ρ†ΠΈΠΊΠ» Π»ΠΈΠΌΠΎΠ½Π½ΠΎΡ— кислоти), Π° ΠΏΡ–Π΄ час Ρ–ΡˆΠ΅ΠΌΡ–Ρ— ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽΡ” Ρ€Π΅ΠΏΠ΅Ρ€Ρ„ΡƒΠ·Ρ–ΠΉΠ½Π΅ пошкодТСння Π·Π° допомогою продукування ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΠ³ΠΎ кисню. Π’ΠΎΡ‡Π½Π΅ визначСння Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ΠΈ для Π°Π½Π°Π»Ρ–Π·Ρƒ Ρ” ΠΊΠ»ΡŽΡ‡ΠΎΠ²ΠΈΠΌ Π² ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΎΠΌΡ–Ρ†Ρ– для використання Π² якості Π½ΠΈΠ·ΡŒΠΊΠΎΠΌΠΎΠ»Π΅ΠΊΡƒΠ»ΡΡ€Π½ΠΈΡ… Π±Ρ–ΠΎΠΌΠ°Ρ€ΠΊΠ΅Ρ€Ρ–Π² Π² Ρ€Π°Π·Ρ– ΠΏΠΎΠ»Ρ–ΠΏΡˆΠ΅Π½Π½Ρ діагностичних ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ–Π².ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄ Π³Π°Π·ΠΎΠ²ΠΎΡ— Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎ-мас-спСктромСтрії (Π“Π₯-МБ). Для ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΠ³ΠΎ визначСння використаного процСсу Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†Ρ–Ρ— Π±ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— кислоти ΡˆΠ»ΡΡ…ΠΎΠΌ ΡΠΈΠ»Ρ–Π»ΡŽΠ²Π°Π½Π½Ρ Π· використанням -біс- (тримСтилсиліл) -Ρ‚Ρ€ΠΈΡ„Ρ‚ΠΎΡ€Π°Ρ†Π΅Ρ‚Π°ΠΌΡ–Π΄Π° (BSTFA).Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ. Π”Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ‚ΠΎΡ€ BSTFA, час Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†Ρ–Ρ— 3-4 Π³ΠΎΠ΄ΠΈΠ½ΠΈ Ρ– Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π° Π΄Π΅Ρ€ΠΈΠ²Π°Ρ‚ΠΈΠ·Π°Ρ†Ρ–Ρ— 70 Β°C Π±ΡƒΠ»ΠΈ ΠΎΠ±Ρ€Π°Π½Ρ– Π² якості ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… ΡƒΠΌΠΎΠ² процСсу для ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΠ³ΠΎ визначСння Π±ΡƒΡ€ΡˆΡ‚ΠΈΠ½ΠΎΠ²ΠΎΡ— кислоти ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Π“Π₯-МБ Π² Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΠ°Ρ…. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ ΠΏΠΎΠΊΠ°Π·ΡƒΡŽΡ‚ΡŒ, Ρ‰ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π“Π₯-МБ Π‘Π”Π† Π· випаровуванням Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆ Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΠΉ для ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΠ³ΠΎ визначСння сукцината Π² Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΠ°Ρ… після Ρ–ΡˆΠ΅ΠΌΡ–Ρ— / Ρ€Π΅ΠΏΠ΅Ρ€Ρ„ΡƒΠ·Ρ–ΠΉΠ½ΠΎΠ³ΠΎ ΡƒΡˆΠΊΠΎΠ΄ΠΆΠ΅Π½Π½Ρ. Π‘Π΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Π΅ дСтСктування Ρ–ΠΎΠ½Ρ–Π² (Π‘Π”Π†) Π΄ΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽΠ²Π°Ρ‚ΠΈ ΠΏΡ–Π΄ΠΌΠ½ΠΎΠΆΠΈΠ½Π° Ρ„Ρ€Π°Π³ΠΌΠ΅Π½Ρ‚Ρ–Π² Π·Ρ– Π·Π²'язаними значСннями маси Π² ΠΏΠ΅Π²Π½ΠΎΠΌΡƒ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ– часу утримування (RT) для Π½Π°Π±ΠΎΡ€Ρƒ Ρ†Ρ–Π»Π΅ΠΉ.Висновки. Π“Π₯-МБ ΠΌΠ°Ρ” ΠΊΡ–Π»ΡŒΠΊΠ° ΠΏΠ΅Ρ€Π΅Π²Π°Π³ для Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½Π½Ρ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— сукцинату Π² Π½Π΅Π²Π΅Π»ΠΈΠΊΠΈΡ… Π·Ρ€Π°Π·ΠΊΠ°Ρ… Ρ‚ΠΊΠ°Π½ΠΈΠ½ Π½ΠΈΡ€ΠΊΠΈ (Π»Ρ–ΠΎΡ„Ρ–Π»Ρ–Π·ΠΎΠ²Π°Π½Ρ– ΠΌΡ–Ρ‚ΠΎΡ…ΠΎΠ½Π΄Ρ€Ρ–Ρ—). ΠœΠ΅Ρ‚ΠΎΠ΄ ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ застосований Π² Π½Π΅Π²Π΅Π»ΠΈΠΊΠΈΡ… ΡˆΠΌΠ°Ρ‚ΠΎΡ‡ΠΊΠ°Ρ… Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ - Π·Ρ€Π°Π·ΠΊΠΈ Π±Ρ–ΠΎΠΏΡ–Ρ—, Ρ‚ΠΊΠ°Π½ΠΈΠ½ΠΈ Π· Ρ€Ρ–Π·Π½ΠΈΡ… ΠΎΡ€Π³Π°Π½Ρ–

    Bio-based Succinic Acid Sample Preparation and Derivatization Procedure Optimisation for Gas Chromatography-mass Spectrometry Analysis

    Full text link
    This study focused on bio-based succinic acid sample preparation and derivatization conditions optimization using GC-MS analytical method. Succinic acid, the precursor of a wide range bio-compounds, especially it is important in accumulation of mitochondrial metabolite succinate (citric acid cycle) and during ischemia controls reperfusion injury through mitochondrial reactive oxygen production. Accurate determination of analytes is the key in metabolomics to use as low molecular biomarkers in case to improve diagnostic methods.Methods. Gas chromatography-mass spectrometry (GC-MS) method. For the quantitative determination of the succinic acid applied derivatization process by silylation using -bis- (trimethylsilyl) -trifluoroacetamide (BSTFA).Results. The derivatization agent BSTFA, the derivatization time of 3-4 hours and derivatization temperature at 70 Β°C were selected as the optimal derivatization condition for quantification of succinic acid by GΠ‘/MS in biological samples. The results show that GC-MS SIM method with evaporation was the most effective to quantify succinate in biological samples after ischemia/reperfusion injury. Selected ion monitoring (SIM) allowed to monitor a subset of fragments with their related mass values in a certain retention time (RT) range for a set of targets.Conclusions. DC – MS has several advantages for measurements of succinate concentration in small kidney tissue samples (lyophilized mitochondria). The method can be applied in small pieces of tissue - biopy samples, tissues from various organ
    corecore