1,984 research outputs found
Estimation of means in graphical Gaussian models with symmetries
We study the problem of estimability of means in undirected graphical
Gaussian models with symmetry restrictions represented by a colored graph.
Following on from previous studies, we partition the variables into sets of
vertices whose corresponding means are restricted to being identical. We find a
necessary and sufficient condition on the partition to ensure equality between
the maximum likelihood and least-squares estimators of the mean.Comment: Published in at http://dx.doi.org/10.1214/12-AOS991 the Annals of
Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical
Statistics (http://www.imstat.org
Inference in Graphical Gaussian Models with Edge and Vertex Symmetries with the gRc Package for R
In this paper we present the R package gRc for statistical inference in graphical Gaussian models in which symmetry restrictions have been imposed on the concentration or partial correlation matrix. The models are represented by coloured graphs where parameters associated with edges or vertices of same colour are restricted to being identical. We describe algorithms for maximum likelihood estimation and discuss model selection issues. The paper illustrates the practical use of the gRc package.
Recommended from our members
Identification and separation of DNA mixtures using peak area information (Updated version of Statistical Research Paper No. 25)
We introduce a new methodology, based upon probabilistic expert systems, for analysing forensic identification problems involving DNA mixture traces using quantitative peak area information. Peak area is modelled with conditional Gaussian distributions. The expert system can be used for ascertaining whether individuals, whose profiles have been measured, have contributed to the mixture, but also to predict DNA profiles of unknown contributors by separating the mixture into its individual components. The potential of our probabilistic methodology is illustrated on case data examples and compared with alternative approaches. The advantages are that identification and separation issues can be handled in a unified way within a single probabilistic model and the uncertainty associated with the analysis is quantified. Further work, required to bring the methodology to a point where it could be applied to the routine analysis of casework, is discussed
Recommended from our members
Identification and separation of DNA mixtures using peak area information
Probabilistic expert systems for handling artifacts in complex DNA mixtures
This paper presents a coherent probabilistic framework for taking account of allelic dropout, stutter bands and silent alleles when interpreting STR DNA profiles from a mixture sample using peak size information arising from a PCR analysis. This information can be exploited for evaluating the evidential strength for a hypothesis that DNA from a particular person is present in the mixture. It extends an earlier Bayesian network approach that ignored such artifacts. We illustrate the use of the extended network on a published casework example
On Exchangeability in Network Models
We derive representation theorems for exchangeable distributions on finite
and infinite graphs using elementary arguments based on geometric and
graph-theoretic concepts. Our results elucidate some of the key differences,
and their implications, between statistical network models that are finitely
exchangeable and models that define a consistent sequence of probability
distributions on graphs of increasing size.Comment: Dedicated to the memory of Steve Fienber
Inference in Graphical Gaussian Models with Edge and Vertex Symmetries with the gRc Package for R
In this paper we present the R package gRc for statistical inference in graphical Gaussian models in which symmetry restrictions have been imposed on the concentration or partial correlation matrix. The models are represented by coloured graphs where parameters associated with edges or vertices of same colour are restricted to being identical. We describe algorithms for maximum likelihood estimation and discuss model selection issues. The paper illustrates the practical use of the gRc package
Maximum Likelihood Estimation in Gaussian Chain Graph Models under the Alternative Markov Property
The AMP Markov property is a recently proposed alternative Markov property
for chain graphs. In the case of continuous variables with a joint multivariate
Gaussian distribution, it is the AMP rather than the earlier introduced LWF
Markov property that is coherent with data-generation by natural
block-recursive regressions. In this paper, we show that maximum likelihood
estimates in Gaussian AMP chain graph models can be obtained by combining
generalized least squares and iterative proportional fitting to an iterative
algorithm. In an appendix, we give useful convergence results for iterative
partial maximization algorithms that apply in particular to the described
algorithm.Comment: 15 pages, article will appear in Scandinavian Journal of Statistic
Practical Bayesian Modeling and Inference for Massive Spatial Datasets On Modest Computing Environments
With continued advances in Geographic Information Systems and related
computational technologies, statisticians are often required to analyze very
large spatial datasets. This has generated substantial interest over the last
decade, already too vast to be summarized here, in scalable methodologies for
analyzing large spatial datasets. Scalable spatial process models have been
found especially attractive due to their richness and flexibility and,
particularly so in the Bayesian paradigm, due to their presence in hierarchical
model settings. However, the vast majority of research articles present in this
domain have been geared toward innovative theory or more complex model
development. Very limited attention has been accorded to approaches for easily
implementable scalable hierarchical models for the practicing scientist or
spatial analyst. This article is submitted to the Practice section of the
journal with the aim of developing massively scalable Bayesian approaches that
can rapidly deliver Bayesian inference on spatial process that are practically
indistinguishable from inference obtained using more expensive alternatives. A
key emphasis is on implementation within very standard (modest) computing
environments (e.g., a standard desktop or laptop) using easily available
statistical software packages without requiring message-parsing interfaces or
parallel programming paradigms. Key insights are offered regarding assumptions
and approximations concerning practical efficiency.Comment: 20 pages, 4 figures, 2 table
- …