
JSS Journal of Statistical Software
December 2007, Volume 23, Issue 6. http://www.jstatsoft.org/

Inference in Graphical Gaussian Models with Edge

and Vertex Symmetries with the gRc Package for R

Søren Højsgaard
Aarhus University

Steffen L. Lauritzen
University of Oxford

Abstract

In this paper we present the R package gRc for statistical inference in graphical Gaus-
sian models in which symmetry restrictions have been imposed on the concentration or
partial correlation matrix. The models are represented by coloured graphs where param-
eters associated with edges or vertices of same colour are restricted to being identical.
We describe algorithms for maximum likelihood estimation and discuss model selection
issues. The paper illustrates the practical use of the gRc package.

Keywords: concentration matrix, conditional independence, covariance selection, graphical
model, graph, graph colouring, iterative partial maximization, iterative proportional scaling,
multivariate normal distribution, partial correlation .

1. Introduction

This paper describes an R package (R Development Core Team 2007) for statistical inference
in a class of graphical Gaussian models with edge and vertex symmetries as introduced by
Højsgaard and Lauritzen (2007), see also Højsgaard and Lauritzen (2005). The models gen-
eralise graphical Gaussian models (hereafter abbreviated GGMs, Whittaker 1990; Lauritzen
1996), also known as covariance selection models (Dempster 1972).

There are two types of models available in gRc. In one type, denoted RCON models, selected
elements of the concentration matrix (the inverse covariance matrix) are restricted to being
identical. These models are all linear in the inverse covariance matrix and are therefore
instances of models discussed by Anderson (1970). In the other class, denoted RCOR models,
it is the partial correlations rather than the concentrations which are restricted to being equal.
We use RCOX models as a generic term for both types. The gRc package is part of the “gR
initiative” (Lauritzen 2002) aiming to make graphical models available in R.

http://www.jstatsoft.org/

2 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

2. Preliminaries and notation

2.1. Graph colouring

Consider an undirected graph G = (V,E). Colouring the vertices of G with R ≤ |V | different
colours induces a partitioning of V into disjoint sets V1, . . . , VR called vertex colour classes
where all vertices in Vr have the same colour. Here |V | denotes the number of elements in
V . A similar colouring of the edges E with S ≤ |E| different colours yields a partitioning of
E into disjoint sets E1, . . . , ES called edge colour classes where all edges in Es have the same
colour. We say that V = {V1, . . . , VR} is a vertex colouring and E = {E1, . . . , ES} is an edge
colouring.

A colour class with only one element is said to be atomic. A colour class which is not atomic
is composite. A set a ⊂ V is called neutral if its induced subgraph has only atomic colour
classes.

When drawing vertices/edges we make the convention that black and white are used for
atomic colour classes. Thus two edges displayed in black will be in different (atomic) colour
classes.

Figure 1 illustrates a graph colouring. The edge between vertices 1 and 2 is written 1:2 etc.
The coloured graph in (a) is given by (V, E) where

V = [1, 4][2, 3], E = (1:2, 1:3)(2:4, 3:4)

whereas the graph in (b) is given by V = [1, 4][2][3] and E = (1:2, 1:3)(2:4)(3:4).

.

.

+
+

(b)

3 4

1 2*

*

+
+ ++

++

(a)

3 4

1 2*

*

**

**

Figure 1: Coloured graphs. (a): The edges 1:2 and 1:3 are in the same (light blue) edge
colour class as also indicated by the “+”-sign. Likewise, 2:4 and 3:4 are in the same (green)
edge colour class, also indicated by “++”. The vertices 1 and 4 are in the red vertex colour
class (also indicated by“*”) while vertices 2 and 3 are in the blue vertex colour class (indicated
by “**”). (b): Illustration of atomic colour classes. The vertices 2 and 3 are drawn in black
and are atomic, so 2 and 3 are in different vertex colour classes. Likewise for edges 2:4 and
3:4.

2.2. Graphical Gaussian models

Graphical Gaussian models are concerned with the distribution of a multivariate random
vector Y = (Yα)α∈V following a Nd(µ,Σ) distribution where d = |V |. For simplicity we
assume throughout that µ = 0. In the following we use Greek letters to refer to single
variables and Latin letters to refer to sets of variables. We let K = Σ−1 denote the inverse

Journal of Statistical Software 3

covariance, also known as the concentration with elements (kαβ)α,β∈V . The partial correlation
between Yα and Yβ given all other variables is then

ραβ|V \{α,β} = −kαβ/
√
kααkββ . (1)

Thus kαβ = 0 if and only if Yα and Yβ are conditionally independent given all other variables.

A graphical Gaussian model (hereafter abbreviated GGM) is represented by an undirected
graph G = (V,E) where V is a set of vertices representing the variables and E is a set of
undirected edges. The graph represents the model with K being a positive definite matrix
having kαβ = 0 whenever there is no edge between α and β in G.

2.3. RCON models – Restricted CONcentration models

An RCON model with vertex colour classes V and edge colour classes E is obtained by
restricting the elements of K = Σ−1 further as follows: 1) All partial variances (i.e. all
diagonal elements of K) corresponding to vertices in the same vertex colour class must be
identical. 2) All off–diagonal entries of K corresponding to edges in the same edge colour
class must be identical. Thus, the diagonal of K can be specified by an R dimensional vector
η while the off–diagonal elements are given by an S dimensional vector δ so we can write
K = K(η, δ). Figure 1 (a) thereby represents the concentration matrix

K =

η1 δ1 δ1 0
δ1 η2 0 δ2
δ1 0 η2 δ2
0 δ2 δ2 η1

 .

2.4. RCOR models – Restricted partial CORrelation models

An RCOR model with vertex classes V and edge classes E is obtained by restricting the
elements of K = Σ−1 as follows: 1) All partial variances corresponding to vertices in the same
vertex colour class must be identical. 2) All partial correlations corresponding to edges in the
same edge colour class must be identical.

As an RCOR model, Figure 1 (b) represents a concentration matrix K written as

K(η, δ) = A(η)C(δ)A(η),

where

A =

η1 0 0 0
0 η2 0 0
0 0 η3 0
0 0 0 η1

 and C =

1 δ1 δ1 0
δ1 1 0 δ2
δ1 0 1 δ3
0 δ2 δ3 1

 .
Hence from (1), A contains the inverse partial standard errors on the diagonal while C contains
minus the partial correlations on the off–diagonal. The vertex colour classes of an RCOR
model is then restricting elements of A whereas the edge colour classes are restricting elements
of C.

4 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

3. Specifying and displaying models

3.1. Working data set: Mathematics marks

The gRc package will be illustrated on the basis of the following data set taken from Mardia,
Kent, and Bibby (1979), see also Edwards (2000). Data contains the examination marks for
88 students in 5 different mathematics subjects: Mechanics (me), Vectors (ve), Algebra (al),
Analysis (an) and Statistics (st). Data is contained the data set math. A stepwise backward
model selection yields the “butterfly” model shown in Figure 2, (a), see also Whittaker (1990,
page 4).

3.2. Specifying the butterfly model – a GGM

Initially we specify the butterfly model for the mathmark data as a GGM which, by definition,
is also an RCON and RCOR model. The engine for specifying and fitting the models is the
rcox() function which takes a type argument specifying the model type. The default model
type is type="rcon".

In the following we shall show different ways of specifying models. For a GGM, the edge and
vertex colour classes can be specified indirectly by a generating class, e.g. the cliques of the
independence graph. For example, the butterfly model m0 can be specified as:

R> m0 <- rcox(~me:ve:al + al:an:st, data = math)

RCON model: logL=-1278.991 dimension=11 method=scoring time=0.06
vcc: ~me, ~ve, ~al, ~an, ~st
ecc: ~me:ve, ~al:me, ~al:ve, ~al:an, ~al:st, ~an:st

Alternatively one can specify the vertex and edge colour classes (which are all atomic because
the model is a GGM) directly as:

R> m0 <- rcox(vcc = list(~me, ~ve, ~al, ~an, ~st), ecc = list(~me:ve,

~me:al, ~ve:al, ~al:an, ~al:st, ~an:st), data = math)

.

.

(a) m0

+
+

*

*

Mechanics

Algebra

Vectors

Analysis

Statistics(b) m1
**

**

++ ++

Mechanics

Algebra

Vectors

Analysis

Statistics

Figure 2: (a) The graphical Gaussian “butterfly” model selected for the mathmarks data.
All vertices and edges are neutral, i.e. the parameters are unrestricted. In the following this
model is called m0. (b) A representation of an RCON / RCOR model with restrictions on
both vertices and edges. This model is denoted m1 in the following.

Journal of Statistical Software 5

3.3. Mixed representations of RCON / RCOR models

In connection with model specification it is convenient to be able to work with a mixed
representation of a model as a triple (C,V, E) where C is the generating class for a GGM. The
convention in connection with such a triple specification is as follows: 1) C specifies vertices
and edges in the model. These are a priori unrestricted. 2) E also specifies edges. Some of
these may already have been specified in C but in that case restrictions in E will be imposed.
3) V also specifies vertices. Some of these may already have been specified in C but in that
case restrictions in V will be imposed.

3.4. Adding symmetry restrictions to the butterfly model

To illustrate RCON models which are not standard GGMs we impose the following restrictions
on m0 to obtain m1 (which is illustrated in Figure 2, (b)):

1. Vertices me and st are in the same vertex colour class and so are ve and an.

2. Edges me:ve and me:al are in the same edge colour class and so are ve:al and al:st.

The RCON model is fitted by

R> m1 <- rcox(~al:an:st, vcc = list(~me + st, ~ve + an), ecc = list(~me:ve +

me:al, ~ve:al + al:st), data = math)

Note that here we have specified some of the edges through a generating class for a graphical
model, i.e. ~al:an:st.
Setting type="rcor" in rcox() will similarly fit the corresponding RCOR model:

R> m1c <- rcox(~al:an:st, vcc = list(~me + st, ~ve + an), ecc = list(~me:ve +

me:al, ~ve:al + al:st), data = math, type = "rcor")

RCOR model: logL=-118.8656 dimension=7 method=scoring time=0.06
vcc: ~al, ~me + st, ~ve + an
ecc: ~al:an, ~an:st, ~me:ve + me:al, ~ve:al + al:st

Retrieving vertex and edge colour classes

The colour classes can be retrieved using the getecc() and getvcc() functions, e.g.

R> getecc(m1)

ecc1 ~al:an
ecc2 ~an:st
ecc3 ~me:ve + me:al
ecc4 ~ve:al + al:st

Model summaries etc.

Different type of model summaries are available. The default summary type is type="coef"
which gives a table with parameter estimates, standard errors etc:

6 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

R> summary(m1)

RCON model: logL=-1279.710 dimension=7 method=scoring time=0.01
vcc: ~al, ~me + st, ~ve + an
ecc: ~al:an, ~an:st, ~me:ve + me:al, ~ve:al + al:st

cctype cc estimate stderr X2 p
vcc1 vcc vcc1 0.028096016 0.0036801167 58.286273 2.264855e-14
vcc2 vcc vcc2 0.005869607 0.0005849235 100.697789 0.000000e+00
vcc3 vcc vcc3 0.010044090 0.0009482858 112.187040 0.000000e+00
ecc1 ecc ecc1 -0.008025724 0.0015468068 26.921316 2.119089e-07
ecc2 ecc ecc2 -0.001763193 0.0007441495 5.614091 1.781662e-02
ecc3 ecc ecc3 -0.002957588 0.0004448611 44.200423 2.964173e-11
ecc4 ecc ecc4 -0.004738956 0.0008238733 33.086017 8.817053e-09

vcc1 ~al
vcc2 ~me + st
vcc3 ~ve + an
ecc1 ~al:an
ecc2 ~an:st
ecc3 ~me:ve + me:al
ecc4 ~ve:al + al:st

The reason for displaying the colour classes below the body of the table is that a colour class
can consist of many edges/vertices thereby making the table very large.
The tests in the table are Wald tests for the corresponding parameters being zero. These
tests only make sense for edge colour classes, but the standard errors for vertex colour classes
are still informative for how precisely the parameters are estimated.
An alternative summary type is "KC" which when applied to the RCON model above gives

R> summary(m1, type = "KC")

RCON model: logL=-1279.710 dimension=7 method=scoring time=0.01
vcc: ~al, ~me + st, ~ve + an
ecc: ~al:an, ~an:st, ~me:ve + me:al, ~ve:al + al:st

me ve al an st
me 0.07661336 -0.002957588 -0.002957588 0.000000000 0.000000000
ve 0.38519248 0.100220207 -0.004738956 0.000000000 0.000000000
al 0.23030890 0.282101238 0.167618661 -0.008025724 -0.004738956
an 0.00000000 0.000000000 0.477756429 0.100220207 -0.001763193
st 0.00000000 0.000000000 0.369024986 0.229636063 0.076613361

The fitted concentrations for edge colour classes appear above the diagonal (some of these are
restriced to being identical under the model). The diagonal contains the fitted concentrations
for for vertex colour classes, i.e. the partial variances (some of these are restriced to being
identical under the model). Below the diagonal are the corresponding partial correlations.
When applied to the RCOR model above the summary type "KC" gives

Journal of Statistical Software 7

al
an

me

st

ve

Figure 3: The display of the model m1 produced by the plot() function.

R> summary(m1c, type = "KC")

RCOR model: logL=-118.8656 dimension=7 method=scoring time=0.06
vcc: ~al, ~me + st, ~ve + an
ecc: ~al:an, ~an:st, ~me:ve + me:al, ~ve:al + al:st

me ve al an st
me 1.3185867 -0.5213360 -0.6737147 0.0000000 0.0000000
ve 0.2849471 1.3875378 -0.8754901 0.0000000 0.0000000
al 0.2849471 0.3518871 1.7930942 -1.0706683 -0.8319843
an 0.0000000 0.0000000 0.4303354 1.3875378 -0.4406480
st 0.0000000 0.0000000 0.3518871 0.2408454 1.3185867

As before, the fitted concentrations for edge colour classes appear above the diagonal. The di-
agonal contains the fitted concentrations for for vertex colour classes, i.e. the partial variances.
Below the diagonal are the corresponding partial correlations (of which some are restricted
to being identical under the model).

Other types of summaries are "K" and "ACA".

Standard methods like coef (for obtaining the parameter estimates) and vcov (for obtaining
the asymptotic variance for the estimators) are available.

The graph in Figure 3 is obtained by

R> plot(m1)

4. Maximum likelihood estimation

This section describes estimation in RCON and RCOR models. See Højsgaard and Lau-
ritzen (2007) for discussion of problems concerning existence and uniqueness of estimators
and convergence properties of the algorithms.

4.1. Likelihood analysis of RCON models

We consider a sample y1, . . . , yn of n observations of Y ∼ Nd(0,Σ) where d = |V | and
Σ = K−1 and let W denote the matrix of sums of squares and products W =

∑n
ν=1 Y

ν(Y ν)>.
The log-likelihood function based on the sample is

logL =
f

2
log det(K)− 1

2
tr(KW), (2)

8 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

where in this case f = n is the degrees of freedom in the Wishart distribution of W . Taking
into account a possible unknown mean µ and calculating W based on residuals would yield
degrees of freedom f = n− 1.
First we consider an RCON model (V, E). For each vertex colour class u ∈ V let T u be the
d × d diagonal matrix with entries T uαα = 1 if α ∈ u and 0 otherwise. For each edge colour
class u ∈ E let T u be the d × d symmetrical matrix with entries T uαβ = 1 if {α, β} ∈ u and
0 otherwise. For convenience we shall identify a vertex α with a set {α, α} such that vertex
classes and edge classes can be treated simultaneously in the following. Hence we can refer
to a generator u for an RCON model (V, E) without specifying whether u is a vertex colour
class or an edge colour class. Consequently, we can rewrite (η, δ) as θ which is an R + S
dimensional vector.
The concentration matrix K = K(θ) can be written K =

∑
u θuT

u. Letting tu = tr(T uW) we
have tr(KW) =

∑
u θu tr(T uW) =

∑
u θut

u. RCON models are thus linear exponential fami-
lies where (−t1/2, . . . ,−tS+T /2) are canonical sufficient statistics and ψ(θ) = −f

2 log det(K) is
the logarithm of the normalising constant. The maximum likelihood estimate is unique and is
obtained by equating the canonical sufficient statistics to their expectation (Barndorff-Nielsen
1978).
Taking first and second derivatives of the logarithm of the normalising constant using that

∂ det(M)
∂x

= det(M) tr(M−1∂M

∂x
) and

∂M−1

∂x
= −M−1∂M

∂x
M−1

gives

E(−tu/2) =
∂ψ

∂θu
= −f

2
tr(T uΣ), Var(−tu/2) =

∂2ψ

∂θ2
u

=
f

2
tr(T uΣT uΣ),

so the system of likelihood equations is

tr(T uW) = f tr(T uΣ), u ∈ V ∪ E . (3)

4.2. Algorithms for estimation in RCON models

This section describes algorithms for estimation in RCON models. Let Σ̂ = K̂−1 denote the
current estimate of Σ at any time during the iteration.

Scoring algorithm

The likelihood equations for RCON models can be solved using Fisher scoring if good starting
values can be found and if the Fisher information matrix is moderate in size. The algorithm,
however, is not globally convergent in general.
It is convenient to parametrise the model with λu = log ηu. With this parametrisation,
differentiation of (2) yields the score function

Su(λ, δ) =
f

2

{
(tr(T uΣ)− tr(T uW)/f)eλu for u ∈ V
(tr(T uΣ)− tr(T uW)/f) for u ∈ E (4)

Differentiating further and changing sign gives the Fisher information matrix

I(λ, δ)uv =
f

2

tr(T uΣT vΣ)eλu+λv for u, v ∈ V
tr(T uΣT vΣ)eλu for u ∈ V, v ∈ E
tr(T uΣT vΣ) for u, v ∈ E .

(5)

Journal of Statistical Software 9

The Fisher scoring step becomes

(λ, δ)← (λ, δ) + I(λ, δ)−1S(λ, δ) (6)

which we found to sometimes be unstable in practice for RCON models.

Jensen, Johansen, and Lauritzen (1991) describe an estimation algorithm for linear expo-
nential families (see also Lauritzen 1996, page 269) which applies Newton iteration to the
reciprocal of the fth root of the likelihood function. This algorithm becomes

(λ, δ)← (λ, δ) + [I(λ, δ) + S(λ, δ)S(λ, δ)>/f]−1S(λ, δ). (7)

This algorithm is globally convergent in the one–parameter case (Jensen et al. 1991). In the
multi–parameter case the global convergence properties are unknown but empirical evidence
suggests that it is quite stable and may be globally convergent.

Observe that omitting S(λ, δ)S(λ, δ)>/f from (7) will give Fisher scoring for (λ, δ). If we
maximise the reciprocal likelihood itself instead of its fth root, the term S(λ, δ)S(λ, δ)>/f is
replaced with S(λ, δ)S(λ, δ)>.

We further define the discrepancy ∆(λ, δ) = 2S(λ, δ)/f where S is the score vector. Expressed
in terms of ∆, (7) becomes

(λ, δ)← (λ, δ) + [2I(λ, δ)/f + ∆(λ, δ)∆(λ, δ)>/2]−1∆(λ, δ). (8)

Using the default method="scoring" in gRc for RCON models invokes (7) which can be seen
as a stabilised version of Fisher scoring (6).

Iterative partial maximisation

Jensen et al. (1991) show that (7) is globally convergent in an exponential family if applied
to one parameter at the time while keeping all other parameters fixed at their current values.

This iterative partial maximisation scheme works as follows for RCON models. Repeatedly
loop through the elements of u ∈ V∪E until convergence doing the following: The discrepancy
is ∆u = tr(T uΣ̂)− tr(T uW)/f = 2Su/f and (8) for a single parameter becomes in this case

θn+1
u ← θnu +Qu, where Qu =

∆u

tr(T uΣ̂T uΣ̂) + ∆2
u/2

. (9)

The substitution (9) is repeated until convergence for the set u before moving on to the next
set in V ∪ E . Thus the algorithm consists of two nested loops: 1) An outer loop running over
the elements u ∈ V ∪ E and 2) an inner loop maximising L with respect to θu while keeping
all other parameters fixed.

Contrary to scoring, iterative partial maximisation does not directly produce the asymptotic
variance-covariance matrix of the parameter estimates. However, after convergence the inverse
Fisher information may be calculated.

To ensure global convergence, the substitution in (9) should only be effectuated if the new
matrix K is positive definite. Otherwise the update should be made follows: Find the largest
value of λ (where λ < 1) for which an update θnu+λQu would yield a positive semidefinite value
of K, i.e. where the update would bring the parameter to the boundary of the parameter space.

10 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

The update should then be θn+1
u ← θnu + λQu/2. Thereby the update moves half the distance

towards the boundary of the parameter space. This refinement has not been implemented
and seems unnecessary. (We have not shown that the Newton steps are guaranteed to keep
K positive definite but empirical evidence suggests that it is so.)

For some colour classes, the partial maximisation of the likelihood can be made explicitly
using a single step of the iterative proportional scaling (IPS) algorithm for graphical Gaussian
models (see e.g. Lauritzen 1996, page 134). Thus for such colour classes the iterative scheme
in (9) needs not to be applied.

Consider a neutral set {α, β}. The parameters kαα, kββ and kαβ are not restricted other than
through K being positive definite. In this case these parameters can be updated with a single
IPS step, i.e. without using the Newton method. Let a = {α, β}, let b denote the complement
to a, let Kaa be the 2× 2 submatrix of K comprising kαα, kββ and kαβ, and let Kab and Kbb

be defined similarly. The likelihood equations are that (Kaa −Kab(Kbb)−1Kba)−1 = Waa/f
which are solved by setting

Kaa ← (Waa/f)−1 +Kab(Kbb)−1Kba. (10)

This IPS step maximises the likelihood over the particular section of the parameter space
given by kαα, kββ and kαβ and thus no iteration is needed. This IPS step can be applied for
any neutral set a ⊂ V . A special case is for a single parameter kαα (i.e. for an atomic vertex
colour class).

An IPS step can also be used for estimating a single parameter kαβ where α 6= β, i.e. for
an atomic edge colour class: Following the notation above, let B = Kab(Kbb)−1Kba. The
likelihood equations state that {(Kaa−B)−1}αβ = Wαβ/f where {A}αβ is the off-diagonal of
a symmetric 2 × 2 matrix A with entries indexed by α and β. This yields the following 2nd
degree equation in kαβ:

−(kαβ −Bαβ)
(kαα −Bαα)(kββ −Bββ)− (kαβ −Bαβ)2

= Wαβ/f. (11)

By inspection of the equation it can be seen that only one of the solutions leads to a positive
definite K, and the solution is

kαβ ← Bαβ +
1−

√
1 + 4Wαβ(kαα −Bαα)(kββ −Bββ)

2Wαβ/f
. (12)

The IPM algorithm is illustrated in an example below. In this connection it is convenient to
work with a mixed representation of an RCON model which is a 3–tuple, (V, E ,N) where N
is a set of neutral sets.

Example 1 The graph in Figure 4 has vertex and edge colour classes

V = [1][2, 3][4][5] E = (1:2, 2:3)(3:4)(4:5),

and specifies a RCON model with restrictions k22 = k33 and k12 = k23. The vertex colour
classes [4] and [5] are both atomic and so is the edge colour class (4, 5) so {4, 5} is a neutral

Journal of Statistical Software 11

.

.

1 2 3 4 5
+ +* *

Figure 4: Representation of the RCON model with the restrictions that k22 = k33 and k12 =
k23.

set. Algorithmically, we add {4, 5} to N , remove (4:5) from E , and remove [4] and [5] from
V. This yields the mixed representation

V = [1][2, 3], E = (1:2, 2:3)(3:4), N = {4, 5}.

One full cycle of the outer loop of the IPM algorithm goes as follows:

1. [1] is an atomic vertex colour class so k11 can be updated with a single IPS step (10) on a
1× 1 matrix.

2. [2, 3] is a composite vertex colour class and (1:2, 2:3) is a composite edge colour class.
Hence k22 = k33 and k12 = k23 must be updated separately with the Newton sequence
(9). So this step is computationally demanding.

3. (3:4) is a atomic edge colour class so k34 can be updated with a single IPS step (12) on
the off–diagonal of a 2× 2 matrix.

4. {4, 5} is a neutral set so all three parameters k44, k55 and k45 can be updated in a single
IPS step (10) on a 2× 2 matrix.

To avoid complex book keeping we have not exploited that {4, 5} is a neutral set and can be
fitted as such in the current version of gRc. Instead 4. above is replaced with

4a. Update in turn k44, k55 and k45 with a single IPS step (10).

The method="ipm" for RCON models is used for the scheme where IPS is applied whenever
possible (i.e. for atomic colour classes) and where (9) is applied for all composite colour classes.

Computational savings

The following considerations lead to additional substantial computational savings:

1. The matrices T u are symmetrical matrices consisting of zeros and ones. It is not nec-
essary (and becomes prohibitive in terms of space requirements for high dimensional
models) to actually create these matrices. When calculating traces like e.g. tr(T uΣ̂T uΣ̂)
and related quantities it is sufficient to identify relevant entries of Σ̂ etc. to be added
up.

2. After updating entries of K, it is not necessary to find Σ = K−1. The relevant part of
Σaa is (Kaa−Kab(Kbb)−1Kba)−1. Note here 1) that Kab(Kbb)−1Kba is fixed throughout
the whole Newton sequence and 2) that the dimension of Σaa is often much smaller than
the dimension of Σ.

12 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

Starting values

A starting value for K for both the scoring and iterative partial maximisation methods is
found on the basis of the method of score matching (Hyvärinen 2005). The score matching
estimate Ǩ is obtained by solving a linear system of R + S equations with R + S unknowns
where R+S is the number of parameters in K. Hence Ǩ can be calculated very easily. While
the score matching estimate is asymptotically unbiased, is not guaranteed to be positive
definite. Moreover, we have not shown that diagonal elements of Ǩ are indeed positive.
If Ǩ is positive definite then Ǩ is taken to be the initial value of K. If Ǩ is not positive definite
we make it so as follows: If the diagonal elements of Ǩ are not all positive we apply score
matching to a model with the same vertex colour classes as the model under consideration
but with no edge colour classes. This yields an estimate K̃, which is also the MLE under this
hypothesis and is formed by taking simple averages over corresponding diagonal elements of
W . Hence K̃ has positive diagonal elements. We then replace the diagonal elements of Ǩ by
the corresponding elements of K̃.
If the modified Ǩ is still not positive definite, let diag(Ǩ) be the diagonal matrix with diagonal
entries being the diagonals of Ǩ. Starting from α = 0.95 and working downwards in steps of
0.05 we search the largest 0 < α < 1 such that Kα = diag(Ǩ) + α(Ǩ − diag(Ǩ)) is positive
definite. To obtain numerical stability we then set α ← 0.95α and calculate Kα again and
take this as the initial value of K.
Setting method="matching" means that we first find an initial estimate of K as described
above and then perform one iteration of the the scoring algorithm (7). This yields a fast
estimate of K which is efficient to the first order.

Comparison of the estimation methods

The scoring method is in general somewhat faster than iterative partial maximisation, but
iterative partial maximisation will tend to be more economical in terms of space requirements.

4.3. Likelihood analysis of RCOR models

For an RCOR model (V, E) we write K(η, δ) = A(η)C(δ)A(η). Then A is diagonal and
consists of the inverse partial standard deviations while C has ones on the diagonal and will
contain minus the partial correlations on the off diagonals. The log likelihood is

logL =
f

2
log det(C) + f log det(A)− 1

2
tr(ACAW). (13)

4.4. Algorithms for estimation in RCOR models

This section describes two iterative algorithms for estimation in RCOR models.

Scoring algorithm

As for RCON models, Fishers method of scoring can be applied for solving the likelihood
equations. It is convenient to parametrise the model with λu = log ηu in which case the score
becomes

Su(λ, δ) =

{
f tr(T u)− tr(T uACAW) for u ∈ V
f tr(T uC−1)/2− tr(T uAWA)/2 for u ∈ E . (14)

Journal of Statistical Software 13

Differentiating further and changing sign yields the observed information matrix

J(λ, δ)uv =

2 tr(T uAWAT vC) for u, v ∈ V, u = v
tr(T uAWAT vC) for u, v ∈ V, u 6= v
tr(T uAWAT v) for u ∈ V, v ∈ E
f
2 tr(T uC−1T vC−1) for u, v ∈ E .

(15)

Taking expectations gives the Fisher information matrix,

I(λ, δ)uv =

2f tr(T uC−1T vC) for u, v ∈ V, u = v
f tr(T uC−1T vC) for u, v ∈ V, u 6= v
f tr(T uC−1T v) for u ∈ V, v ∈ E
f
2 tr(T uC−1T vC−1) for u, v ∈ E .

(16)

Using method="scoring" for RCOR models invokes the iteration (7) with score and infor-
mation given by (14) and (16). For RCOR models we have found that the iteration (7)
can lead to a decrease of the log likelihood. When this occurs, the step size [I(λ, δ) +
S(λ, δ)S(λ, δ)>/f]−1S(λ, δ) is repeatedly halved until the log likelihood has increased.

Iterative partial maximisation

Contrary to RCON models, the restrictions on the concentration matrix are in general not
linear in η and δ for RCOR models. However, for known η, the restrictions are linear in δ and
for known δ, the restrictions are quadratic in η. This suggests to estimate the parameters by
alternating between η and δ as follows:

1. Suppose that C is known, i.e. that δ is known. Then we maximize logL over η. Max-
imising logL over a given ηu keeping the other ηs fixed yields a 2nd order equation
which has a unique positive root. Note that ηu depends on the remaining ηs. Therefore,
we must iterate to solve for η. For the specific form of these equations we refer to
Højsgaard and Lauritzen (2007).

2. Suppose that A is known, i.e. that η is known and let Q = AWA. Then tr(ACAW) =
tr(CQ) and logL can be maximized over δ by maximising

logL(δ) =
f

2
log |C| − 1

2
tr(CQ)

This maximisation can be made by applying the IPM algorithm for RCON models to the
off–diagonal elements of C only, letting Q play the role as W in the likelihood equations
for RCON models. That is, the diagonal elements of C remain constantly equal to one.
Atomic edge colour classes are updated with an IPS step and composite edge colour
classes are updated with the modified Newton algorithm.

The method="ipm" in gRc for RCOR models is used for the scheme where IPS is applied
whenever possible (i.e. for neutral sets and for atomic edge colour classes) and where (9) is
applied for all composite colour classes.

14 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

Starting values

Starting values for RCOR are obtained as follows: First rescale data to have unit variance
and find an initial estimate Ǩ by score matching as if the model were an RCON model, see
Section 4.2 for details.

Next we force Ǩ to satisfy the RCOR model as follows: Let diag(Ǩ) be the diagonal matrix
with diagonal entries being the diagonals of Ǩ. Since K = ACA we set Ǎ =

√
diag(K) and

Č = Ǎ−1KǍ−1, i.e. we rescale Ǩ to have ones on the diagonal to obtain Č. Elements of Ǎ
and Č which under the model are restricted to being identical are replaced by their average.
Now Ǎ is necessarily positive definite. If also Č is positive definite then we take the starting
value of K to be ǍČǍ.

If Č is not positive definite then adopt the same strategy as for RCON models by rescaling
the off-diagonals of Č towards zero until a positive definite matrix Cα is obtained. We then
take the starting value of K to be ǍCαǍ.

As for RCON models one can set method="matching" which means that we first find an initial
estimate of K as described above and then perform one iteration of the scoring algorithm (7).
Note that the estimated covariances of the parameter estimates may be misleading.

Comparison of the estimation methods

For RCOR models the scoring method tends to be slightly faster than iterative partial max-
imisation.

5. Model editing

Before discussing further statistical aspects of gRc we shall in this section describe methods
for modifying RCOX models. The modification is made by the update() function. The new
model is fitted if the original model is fitted unless fit=FALSE is specified to the update()
function. To explicitly fit a model, use the fit() function.

5.1. Joining and splitting colour classes

Colour classes can be joined and split using the update() function. For example, joining the
edge colour classes an:st and me:ve + me:al can be achieved by:

R> update(m1, joinecc = list(~an:st, ~me:ve + me:al))

RCON model: logL=-1281.271 dimension=6 method=scoring time=0.03
vcc: ~al, ~me + st, ~ve + an
ecc: ~al:an, ~ve:al + al:st, ~an:st + me:ve + me:al

These colour classes are number 2 and 3 in the list of edge colour classes, see Section 3.4.
They can hence also be joined by

R> update(m1, joinecc = getecc(m1)[c("ecc2", "ecc3")])

This approach is more convenient if e.g. programming a model selection strategy. Likewise a
vertex colour class can be split by

Journal of Statistical Software 15

R> update(m1, splitvcc = ~ve + an)

or by

R> update(m1, splitvcc = getvcc(m1)["vcc3"])

5.2. Adding and dropping edge colour classes

Adding an edge colour class corresponds to adding a set of edges to the graph and forcing
these to be in the same colour class. Dropping an edge colour class corresponds to deleting
a set of edges from the graph. (Corresponding operations on vertex colour classes make no
sense.) For example:

R> update(m1, addecc = ~me:an + ve:st)

R> update(m1, dropecc = ~me:ve + me:al)

6. Methods for comparison of colour classes

This section describes methods for investigating model reductions. That is 1) investigate if
the parameters for two colour classes u and v in a model are significantly different (so that u
and v can be joined) and 2) investigate if the parameter for an edge colour class u in a model
is significantly different from zero (so that u can be dropped). We also described methods
investigating model expansions. That is 1) investigate if a composite colour class can be split
into atomic colour classes and 2) investigate if an atomic edge colour class can be added to
the model.

The output of these methods is a list with two components: 1) a data frame with the results
of the tests and 2) a list of the colour classes.

6.1. Model comparison

Model reductions

Consider a modelM0 and two colour classes u and v (of the same type) inM0. The feasibility
of joining u and v can be judged by the likelihood ratio statistic. This requires fitting a new
model M1 ⊂ M0 in which u and v are joined. Then M1 can be tested against M0 with a
deviance (likelihood ratio) test statistic

D = −2 logLR10 = −2 log
L1

L0
.

To avoid fitting the model M1, one can instead use the Wald statistic

W =
(θ̂u − θ̂v)2

Var(θ̂u − θ̂v)
.

The asymptotic variance of the difference is obtained from the inverse Fisher information
matrix. Both statistics have under the hypothesis approximately a χ2

d distribution where

16 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

d = df1 − df0. The same alternatives are available for testing if the parameter θu for an edge
colour class is zero. This generalises immediately to cases where several colour classes are
compared simultaneously.

The comparisons can also be made using AIC (Akaike 1974) and BIC (Schwarz 1978). With
reference to the setup above, M1 is preferred to M0 (according to BIC) if

∆BIC = −D + (df0 − df1) log n > 0,

otherwiseM0 is preferred. If using AIC, log n is replaced by 2 above. Because the Wald and
the deviance statistics are asymptotically equivalent we can calculate an approximation to
AIC/BIC by replacing D with W .

Functions for making model reductions accept a stat keyword. Default is stat="wald"
because it is the fastest to calculate.

Model expansions

Consider a model M0 and a composite colour class u in M0. The feasibility of splitting u
can be judged by the likelihood ratio statistic. This requires fitting a new model M1 ⊃ M0

in which u is split. The deviance becomes D = −2 log(L0/L1). When models are expanded,
the Wald statistic is not available as the larger model has not been fitted to data. Apart from
that everything else is as above.

Consequently, functions for model expansion are all based on the deviance statistic and do
therefore not accept a stat keyword.

6.2. Model reductions

Pairwise comparisons of edge/vertex colour classes can be made using the comparecc() func-
tion. To compare two specific edge colour classes using the deviance statistic do:

R> ctab <- comparecc(m1, cc1 = list(~me:ve + me:al, ~ve:al +

al:st), cc2 = list(~an:st, ~al:an), type = "ecc", stat = "dev")

Comparing colour classes of type: ecc using statistic: dev
cc1 cc2 X2 df p aic bic

1 ecc1 ecc1 3.122960 1 0.0771964605 -1.122960 1.3543773
2 ecc1 ecc2 11.989965 1 0.0005348778 -9.989965 -7.5126287
3 ecc2 ecc1 5.430822 1 0.0197843675 -3.430822 -0.9534849
4 ecc2 ecc2 4.798558 1 0.0284835737 -2.798558 -0.3212208

cc1:
ecc1 ~me:ve + me:al
ecc2 ~ve:al + al:st
cc2:
ecc1 ~an:st
ecc2 ~al:an

Available components: tab cc1 cc2

Journal of Statistical Software 17

According to this table, the colour classes ecc1 from cc1 and ecc1 from cc2 are not signifi-
cantly different according to a significance test and BIC.

In comparecc() all colour classes specified in cc1 are compared with all those given in cc2
(duplicate entries are not compared). If cc2=NULL (the default) then all colour classes specified
in cc1 are compared with all colour classes in the model except those specified in cc1. If
cc1=NULL (the default) and cc2=NULL then all pairwise comparisons are made.

Joining colour classes

Joining colour classes leads to a model reduction. The join1 function is essentially a wrapper
for comparecc. Based on the Wald statistic (the default) the pairwise comparisons of the
colour classes of a specific type are made. The set of colour classes under consideration can
be restricted using the scope argument (default is that all colour classes are considered) e.g.

R> join1(m1, scope = list(~an:st, ~me:ve + me:al, ~ve:al + al:st),

type = "ecc")

Comparing colour classes of type: ecc using statistic: wald
cc1 cc2 X2 df p aic bic

1 ecc1 ecc2 3.011035 1 0.08269946 -1.011035 1.4663017
2 ecc1 ecc3 5.180254 1 0.02284499 -3.180254 -0.7029171
3 ecc2 ecc3 3.318470 1 0.06850555 -1.318470 1.1588667

cc1:
ecc1 ~an:st
ecc2 ~me:ve + me:al
ecc3 ~ve:al + al:st
cc2:
ecc1 ~an:st
ecc2 ~me:ve + me:al
ecc3 ~ve:al + al:st

Available components: tab cc1 cc2

Dropping edge colour class

It is possible to test if the parameter for an edge colour class is zero. (Such a test makes
no sense for vertex colour classes). The set of edge colour classes under consideration can be
restricted using the scope argument (default is that all edge colour classes are considered)
e.g.

R> drop1(m1, scope = list(~al:an, ~an:st, ~me:ve + me:al))

Statistic: wald
cc X2 df p aic bic

1 ecc1 26.921316 1 2.119089e-07 -24.921316 -22.443979
2 ecc2 5.614091 1 1.781662e-02 -3.614091 -1.136754

18 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

3 ecc3 44.200423 1 2.964173e-11 -42.200423 -39.723086

cc:
ecc1 ~al:an
ecc2 ~an:st
ecc3 ~me:ve + me:al

Available components: tab cc

6.3. Model expansions

Splitting colour classes

Splitting a (composite) colour class leads to a model expansion. To investigate if edge colour
class in m1 can be split do:

R> split1(m1, scope = list(~ve:al + al:st, ~me:ve + me:al),

type = "ecc")

cc X2 df p aic bic
1 ecc1 0.2306087 1 0.6310729 1.769391 4.246728
2 ecc2 0.1719902 1 0.6783491 1.828010 4.305347

cc:
ecc1 ~ve:al + al:st
ecc2 ~me:ve + me:al

Available components: tab cc

Thus there is no evidence that splitting either of the composite edge colour classes would
significantly enhance the fit of the model. Note that splitting a composite colour class into
atomic colour classes can lead to fairly large increase in the model complexity, i.e. in the
number of parameters in the model.

Adding edge colour class

In the same spirit one can make a test for addition of (atomic) edge colour classes to the
model:

R> add1(m1)

cc X2 df p aic bic
1 ecc1 0.2475697 1 0.6187915 -1.752430 -4.229767
2 ecc2 0.1480575 1 0.7003987 -1.851943 -4.329279
3 ecc3 0.9819775 1 0.3217111 -1.018023 -3.495359
4 ecc4 0.2666198 1 0.6056083 -1.733380 -4.210717

Journal of Statistical Software 19

cc:
ecc1 ~an:me
ecc2 ~me:st
ecc3 ~an:ve
ecc4 ~st:ve

Available components: tab cc

Hence there is no evidence that adding addtional (atomic) edge colour classes to the model
would significantly enhance the fit of the model.

7. Stepwise procedures

This section contains a description of functions for stepwise model selection. The output of
these methods is either a new model object or NULL if no change was made. These functions
are based on repeated applications of the functions described in Section 6, and therefore their
arguments are similar. Default is that the selection criterion is AIC.

7.1. The need for selection strategies

The number of different models which can be formed by colouring edges/vertices in a given
graph is enormous. To illustrate the complexity, consider graphs with three vertices (for which
there are 8 different graphs). A tedious enumeration shows that there are in total (over all 8
graphs) 15 possible edge colour classes. There are 5 possible vertex colour classes which gives
5 × 15 = 75 different models. Therefore, good model selection strategies become important.
This section discusses methods which would be part of model selection strategies; however
much additional work is required in this area.

7.2. Nested versus non–nested models

It should be noted that addition of an edge to a coloured graph can have different meanings:
The model M0 in Figure 5 is given by [1][2][3](1:2, 2:3). Consider addition of the edge 2:3 in
M0. If a new colour class is formed as in M1 then M1 will contain M0 and these two models
can be tested e.g. with a deviance test. An alternative is to add the edge to the already
existing colour class as in M2. In that case, M0 and M2 are not nested. Likewise dropping
e.g. 1:2 from M0 does not lead to a model reduction. A model comparison can however be
made in terms of AIC or BIC.
The methods described in the following all act within nested models and hence AIC and BIC
as well as significance testing can be used as selection criteria.

7.3. Aspects of stepwise procedures

Stepwise joining of the two most homogeneous colour classes

In RCOX models, model reductions can be achieved by joining colour classes. Suppose there
are p colour classes of a given type, e.g. edge colour classes. The number of ways these can be

20 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

.

.

+ +
1

2 3

+ +
1

2 3

+ +
1

2 3
+

M0 M1 M2

Figure 5: Illustration of addition of the edge 2:3 to a coloured graph. If the edge is added
to M0 by forming a new edge colour class as in M1, then M0 and M1 are nested and can
be tested. Alternatively, the edge can added to an existing edge colour class as in M2. The
models M0 and M2 are then not nested.

combined for joining is enormous. Therefore we consider only to join pairs of colour classes
and there are p(p − 1)/2 such pairs to consider. We say we join the two most homogeneous
colour classes. The stepjoin1() function facilitates doing this in a stepwise fashion.

Stepwise dropping of the least significant edge colour class

Model reductions can also be achieved by dropping edge colour classes, which is the counter-
part to dropping insignificant edges in GGMs. The stepdrop1() function facilitates doing
this.

Stepwise splitting of the most heterogeneous composite colour class

In RCOX models, model expansions can be achieved by splitting composite colour classes.
Consider a composite colour class with p elements. The number of colour classes it can be
split into is in general very large, so therefore we consider only the operation of splitting into
atomic colour classes. This is done for each composite colour class of a given in turn. The
colour class who, if split, gives the the largest improvement in model fit (i.e. the smallest
p–values (smaller than the critical level) in terms of significance testing) is said to the most
heterogeneous. This leads to splitting of the most heterogeneous colour class. If a colour class
with p elements is split into atoms there dimension of the model will increase by p− 1. The
stepsplit1() function facilitates doing this.

Stepwise addition of the most significant atomic edge colour class

Model expansions can also be achieved by adding edge colour classes to a model in a stepwise
fashion. This is the counterpart to stepwise addition of edges in GGMs. If p edges missing
from the graph the number of possible edge colour classes which can be formed becomes
enormous – even for small p. Therefore we only consider adding the most significant atomic
edge colour class. The stepadd1() function facilitates doing this.

7.4. Stepwise model reductions

Stepwise join of colour classes

Starting from the butterfly model m0 we first join vertex colour classes and then join edge
colour classes afterwards:

Journal of Statistical Software 21

al
an

me

st

ve

Figure 6: The model obtained after 1) first successively joining vertex colour classes and 2)
then successively joining edge colour classes.

R> m01 <- stepjoin1(m0, type = "vcc")

Stepwise joining of vertex colour classes
statistic=wald criterion=aic
Joining: ~ve; ~an
X2: 0.059888 df: 1 p: 0.806673 aic: 1.940112 bic: 4.417449

Joining: ~me; ~st
X2: 0.954332 df: 1 p: 0.328619 aic: 1.045668 bic: 3.523005

RCON model: logL=-1279.506 dimension=9 method=scoring time=0.03
vcc: ~al, ~ve + an, ~me + st
ecc: ~me:ve, ~me:al, ~ve:al, ~al:an, ~al:st, ~an:st

R> m02 <- stepjoin1(m01, type = "ecc")

Stepwise joining of edge colour classes
statistic=wald criterion=aic
Joining: ~me:ve; ~me:al
X2: 0.175196 df: 1 p: 0.675534 aic: 1.824804 bic: 4.302140

Joining: ~ve:al; ~al:st
X2: 0.229890 df: 1 p: 0.631605 aic: 1.770110 bic: 4.247447

RCON model: logL=-1279.710 dimension=7 method=scoring time=0.03
vcc: ~al, ~ve + an, ~me + st
ecc: ~al:an, ~an:st, ~me:ve + me:al, ~ve:al + al:st

The resulting model (which is identical to m2 in Section 3) is shown in Figure 6.

Stepwise drop of edge colour classes

Dropping edge colour classes leads to a model reduction. The stepdrop1() function tests
for deletion of each edge colour class in the model and deletes the least significant of these.
Using 0.01 as significance level we can do:

R> stepdrop1(m1, criterion = "test", alpha = 0.01)

22 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

In this case, the function returns NULL because it is not feasible to drop any of the edge colour
classes.

7.5. Stepwise model expansions

Stepwise split of composite colour classes

The split operation for colour classes can be applied in a stepwise fashion. The model in
Figure 7, left is given by:

R> m2 <- rcox(vcc = list(~al + me + st, ~ve + an), ecc = list(~me:ve +

me:al + ve:al, ~al:an + al:st + an:st), data = math)

Splitting first vertex colour classes gives the middle graph in Figure 7. Continuing and
splitting edge colour classes gives the rightmost graph:

R> m3 <- stepsplit1(m2, type = "vcc")

Stepwise splitting of vertex colour classes
statistic=wald criterion=aic
Splitting: ~al + me + st
X2: 85.408451 df: 2 p: 0.000000 aic: -81.408451 bic: -76.453777

RCON model: logL=-1284.651 dimension=6 method=scoring time=0.01
vcc: ~ve + an, ~al, ~me, ~st
ecc: ~me:ve + me:al + ve:al, ~al:an + al:st + an:st

R> m4 <- stepsplit1(m3, type = "ecc")

Stepwise splitting of edge colour classes
statistic=wald criterion=aic
Splitting: ~al:an + al:st + an:st
X2: 8.028886 df: 2 p: 0.018053 aic: -4.028886 bic: 0.925788

RCON model: logL=-1280.637 dimension=8 method=scoring time=0.03
vcc: ~ve + an, ~al, ~me, ~st
ecc: ~me:ve + me:al + ve:al, ~al:an, ~al:st, ~an:st

Stepwise addition of (atomic) edge colour classes

Adding an (atomic) edge colour class leads to a model expansion. The stepadd1() function
will take any edge not in the model and try to add. The edge with the smallest p–value (not
larger than α) will be added. The test made here is always a deviance test:

R> stepadd1(m1, criterion = "test")

Journal of Statistical Software 23

al
an

me

st

ve
al

an

me

st

ve
al

an

me

st

ve

Figure 7: Left: Starting model. Middle: Model after splitting vertex colour classes. Right:
Model after also splitting edge colour classes.

In this case, the function returns NULL because it is not feasible to add any edge colour classes.

8. Discussion and perspectives

We have described an R package gRc for statistical inference in RCON and RCOR models.
These models have been described in some detail, including a description of various algorithms
for maximum likelihood estimation. For further details on the models and their properties
we refer to Højsgaard and Lauritzen (2007).

The facilities of this package cover model editing functions, functions for comparing colour
classes and stepwise model selection functions. These facilities are described. We have also
presented some examples of how to use the package.

Improvements of gRc can be made in several directions of which we outline some here:

1. The current implementation of gRc is made entirely in R. The computing time could be
reduced by implementing larger parts of the algorithms, in particular the iterative partial
maximisation, in a compiled language. Computational savings can also be achieved by
exploiting decompositions of the models.

2. It would be desirable to develop faster faster estimation algorithms such that gRc can
be applied to problems of higher dimension.

3. Additional model selection criteria and strategies in RCON and RCOR models must be
investigated further and implemented.

Finally, gRc should be integrated more closely with other packages in created in the gR
initiative; most importantly the gRbase package (Dethlefsen and Højsgaard 2005) and the
ggm package (Marchetti and Drton 2006).

Acknowledgments

This work has been supported by a grant financed by the Directorate for Food, Fisheries and
Agro Business, Denmark, Lattec I/S, the Danish Cattle Association and the Danish Institute
of Agricultural Sciences and by the Danish Natural Science Research Council.

24 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

References

Akaike H (1974). “A New Look at the Statistical Model Identification.” IEEE Transactions
on Automatic Control, 19(6), 716–723.

Anderson TW (1970). “Estimation of Covariance Matrices which are Linear Combinations or
whose Inverses are Linear Combinations of given Matrices.” In RC Bose, IM Chakravarti,
PC Mahalanobis, CR Rao, KJC Smith (eds.), “Essays in Probability and Statistics,” pp.
1–24. University of North Carolina Press, Chapel Hill, N.C.

Barndorff-Nielsen OE (1978). Information and Exponential Families in Statistical Theory.
Wiley, New York.

Dempster AP (1972). “Covariance Selection.” Biometrics, 28, 157–175.

Dethlefsen C, Højsgaard S (2005). “A Common Platform for Graphical Models in R: The
gRbase Package.” Journal of Statistical Software, 14(17), 1–12.

Edwards D (2000). Introduction to Graphical Modelling. Springer-Verlag, New York, second
edition.

Højsgaard S, Lauritzen SL (2005). “Patterned Graphical Gaussian Models with Concentration
Parameters Restricted to Being Equal.” In “Proceedings of AISTATS 2005,” Barbados.

Højsgaard S, Lauritzen SL (2007). “Graphical Gaussian Models with Edge and Vertex Sym-
metries.” Unpublished manuscript.

Hyvärinen A (2005). “Estimation of Non-Normalized Statistical Models by Score Matching.”
Journal of Machine Learning Research, 6, 695–709.

Jensen ST, Johansen S, Lauritzen SL (1991). “Globally Convergent Algorithms for Maximizing
a Likelihood Function.” Biometrika, 78(4), 867–877.

Lauritzen SL (1996). Graphical Models. Oxford University Press.

Lauritzen SL (2002). “gRaphical Models in R: A New Initiative Within the R Project.” R
News, 2(3), 39. URL http://www.R-project.org/doc/Rnews/.

Marchetti GM, Drton M (2006). ggm: Graphical Gaussian Models. R package version 1.0.2,
URL http://CRAN.R-project.org/.

Mardia KV, Kent JT, Bibby JM (1979). Multivariate Analysis. Academic Press, London.

R Development Core Team (2007). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:
//www.R-project.org/.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6,
461–464.

Whittaker J (1990). Graphical Models in Applied Multivariate Statistics. Wiley, West Sussex.

http://www.R-project.org/doc/Rnews/
http://CRAN.R-project.org/
http://www.R-project.org/
http://www.R-project.org/

Journal of Statistical Software 25

A. Controlling the estimation methods

The rcox() function is controlled by the control argument which is a list with named entries.
The details of this list is given in the documentation of the rcox() function. Here we mention
a few important issues.

The iterations in the scoring and iterative partial maximisation methods are controlled as
follows: With iterative partial maximisation there are an outer and an inner loop, see Sec-
tion 4.2 and the maximum number of iterations are controlled by setting e.g. maxouter=10
and maxinner=5 in the control list. The number of iterations for the scoring method is
controlled by maxouter.

A colour class is essentially either a list of edges or a list of vertices. For high dimensional
models these lists can be very long and displaying them on the screen can be confusing.
Setting short=TRUE in the control list implies that the colour classes are not printed. Note
that the colour classes can however be retrieved using the getvcc() and getecc() functions.

The methods described in Sections 6 and 7 can all be given a details keyword. Default
is details=1 which produces a reasonable amount of output. Increasing details produces
more output while setting details=0 suppresses all output.

B. Deferring model fitting

Default for rcox() as well as for all functions described later for editing models is that the
model is fitted. To avoid fitting, one can supply rcox() with the argument fit=FALSE. To
explicitly fit a model use the function fit().

C. Specification of colour classes in different forms

Colour classes can be specified as a list of formulae, as well as a list of lists. For example,

R> rcox(vcc = list(~me + ve + al, ~st), data = math)

R> rcox(vcc = list(list("me", "ve", "al"), list("st")), data = math)

both represent the same models with restrictions on the vertices. Likewise,

R> rcox(ecc = list(~me:ve + me:al, ~ve:al), data = math)

R> rcox(ecc = list(list(c("me", "ve"), c("me", "al")), list(c("ve",

"al"))), data = math)

specify the same models with restrictions on the edges. The representation as a list of lists is
convenient in connection with programming an automatic model search strategy.

Following these conventions the scope for the functions in Sections 6 and 7 can be represented
in two different ways. For example:

R> add1(m1, scope = list(c("an", "me"), c("me", "st")))

R> add1(m1, scope = list(~an:me, ~me:st))

26 gRc: Graphical Gaussian Models with Edge and Vertex Symmetries

Affiliation:

Søren Højsgaard
Institute of Genetics and Biotechnology
Faculty of Agricultural Sciences
Aarhus University
8830 Tjele, Denmark
E-mail: sorenh@agrsci.dk
URL: http://gbi.agrsci.dk/~sorenh/

Steffen L. Lauritzen
Department of Statistics
University of Oxford
1 South Parks Road
Oxford OX1 3TG, United Kingdom
E-mail: steffen@stats.ox.ac.uk
URL: http://www.stats.ox.ac.uk/~steffen/

Journal of Statistical Software http://www.jstatsoft.org/
published by the American Statistical Association http://www.amstat.org/

Volume 23, Issue 6 Submitted: 2006-09-20
December 2007 Accepted: 2007-09-06

mailto:sorenh@agrsci.dk
http://gbi.agrsci.dk/~sorenh/
mailto:steffen@stats.ox.ac.uk
http://www.stats.ox.ac.uk/~steffen/
http://www.jstatsoft.org/
http://www.amstat.org/

	Introduction
	Preliminaries and notation
	Graph colouring
	Graphical Gaussian models
	RCON models -- Restricted CONcentration models
	RCOR models -- Restricted partial CORrelation models

	Specifying and displaying models
	Working data set: Mathematics marks
	Specifying the butterfly model -- a GGM
	Mixed representations of RCON / RCOR models
	Adding symmetry restrictions to the butterfly model
	Retrieving vertex and edge colour classes
	Model summaries etc.

	Maximum likelihood estimation
	Likelihood analysis of RCON models
	Algorithms for estimation in RCON models
	Scoring algorithm
	Iterative partial maximisation
	Computational savings
	Starting values
	Comparison of the estimation methods

	Likelihood analysis of RCOR models
	Algorithms for estimation in RCOR models
	Scoring algorithm
	Iterative partial maximisation
	Starting values
	Comparison of the estimation methods

	Model editing
	Joining and splitting colour classes
	Adding and dropping edge colour classes

	Methods for comparison of colour classes
	Model comparison
	Model reductions
	Model expansions

	Model reductions
	Joining colour classes
	Dropping edge colour class

	Model expansions
	Splitting colour classes
	Adding edge colour class

	Stepwise procedures
	The need for selection strategies
	Nested versus non--nested models
	Aspects of stepwise procedures
	Stepwise joining of the two most homogeneous colour classes
	Stepwise dropping of the least significant edge colour class
	Stepwise splitting of the most heterogeneous composite colour class
	Stepwise addition of the most significant atomic edge colour class

	Stepwise model reductions
	Stepwise join of colour classes
	Stepwise drop of edge colour classes

	Stepwise model expansions
	Stepwise split of composite colour classes
	Stepwise addition of (atomic) edge colour classes

	Discussion and perspectives
	Controlling the estimation methods
	Deferring model fitting
	Specification of colour classes in different forms

