22 research outputs found

    Evaluation of nitrogen- and silicon-vacancy defect centres as single photon sources in quantum key distribution

    Get PDF
    We demonstrate a quantum key distribution (QKD) testbed for room temperature single photon sources based on defect centres in diamond. A BB84 protocol over a short free-space transmission line is implemented. The performance of nitrogen-vacancy (NV) as well as silicon-vacancy defect (SiV) centres is evaluated and an extrapolation for next-generation sources with enhanced efficiency is discussed.Comment: 14 pages, 5 figure

    Comparison of three methods for ascertainment of contact information relevant to respiratory pathogen transmission in encounter networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mathematical models of infection that consider targeted interventions are exquisitely dependent on the assumed mixing patterns of the population. We report on a pilot study designed to assess three different methods (one retrospective, two prospective) for obtaining contact data relevant to the determination of these mixing patterns.</p> <p>Methods</p> <p>65 adults were asked to record their social encounters in each location visited during 6 study days using a novel method whereby a change in physical location of the study participant triggered data entry. Using a cross-over design, all participants recorded encounters on 3 days in a paper diary and 3 days using an electronic recording device (PDA). Participants were randomised to first prospective recording method.</p> <p>Results</p> <p>Both methods captured more contacts than a pre-study questionnaire, but ascertainment using the paper diary was superior to the PDA (mean difference: 4.52 (95% CI 0.28, 8.77). Paper diaries were found more acceptable to the participants compared with the PDA. Statistical analysis confirms that our results are broadly consistent with those reported from large-scale European based surveys. An association between household size (trend 0.14, 95% CI (0.06, 0.22), <it>P </it>< 0.001) and composition (presence of child 0.37, 95% CI (0.17, 0.56), <it>P </it>< 0.001) and the total number of reported contacts was observed, highlighting the importance of sampling study populations based on household characteristics as well as age. New contacts were still being recorded on the third study day, but compliance had declined, indicating that the optimal number of sample days represents a trade-off between completeness and quality of data for an individual.</p> <p>Conclusions</p> <p>The study's location-based reporting design allows greater scope compared to other methods for examining differences in the characteristics of encounters over a range of environments. Improved parameterisation of dynamic transmission models gained from work of this type will aid in the development of more robust decision support tools to assist health policy makers and planners.</p

    Plug&Play Fiber‐Coupled 73 kHz Single‐Photon Source Operating in the Telecom O‐Band

    Get PDF
    A user‐friendly, fiber‐coupled, single‐photon source operating at telecom wavelengths is a key component of photonic quantum networks providing long‐haul, ultra‐secure data exchange. To take full advantage of quantum‐mechanical data protection and to maximize the transmission rate and distance, a true quantum source providing single photons on demand is highly desirable. This great challenge is tackled by developing a ready‐to‐use semiconductor quantum‐dot‐based device that launches single photons at a wavelength of 1.3 ”m directly into a single‐mode optical fiber. In the proposed approach, the quantum dot is deterministically integrated into a nanophotonic structure to ensure efficient on‐chip coupling into a fiber. The whole arrangement is integrated into a 19Êș compatible housing to enable stand‐alone operation by cooling via a compact Stirling cryocooler. The realized source delivers single photons with a multiphoton events probability as low as 0.15 and a single‐photon emission rate of up to 73 kHz into a standard telecom single‐mode fiber.BMBF, 05M20ZBM, Forschungscampus MODAL - Mathematical Optimization and Data Analysis Laboratories - zweite Förderphase (Stabilisierung)TU Berlin, Open-Access-Mittel – 202

    New compact and flexible picosecond laser system for multi-wavelength time-resolved tissue spectroscopy

    No full text
    A new compact and flexible picosecond laser system for multi-wavelength timeresolved tissue spectroscopy was developed. Characterization on diffusive phantoms in terms of stability during fast switching, and linearity for absorption and scattering were performed
    corecore