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Abstract
We demonstrate a quantum key distribution (QKD) testbed for room temperature
single photon sources based on defect centres in diamond. A BB84 protocol
over a short free-space transmission line is implemented. The performance
of nitrogen-vacancy (NV) as well as silicon-vacancy defect (SiV) centres is
evaluated. An extrapolation for the future applicability of such sources in
quantum information processing is discussed.
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1. Introduction

Single photons are a key ingredient in many quantum information processing (QIP) applications.
Examples are quantum key distribution (QKD) [1], long distance quantum repeater protocols [2]
or linear optical quantum computing. However, in QKD, high key rate and/or long distance
experiments have been successfully implemented without true single photons using weak
coherent laser pulses (WCP) [3, 4] together with the decoy state protocol [5, 6]. Although this
protocol is secure against photon number splitting (PNS) attacks, it has the disadvantage of
producing some overhead, because one explicitly uses vacuum and very low intensity pulses
together with the signal pulses and also operates with faint pulses with a mean photon number
per pulse of around 0.5. In addition, long-range QKD requires quantum repeaters where sources
of single indistinguishable photons are advantageous over photon pair sources [2]. A true single
photon source (SPS) with high efficiency could therefore still be favourable in QIP compared
to WCP. Efficiency means that it emits a single photon into a well-defined spectral and spatial
mode with a probability near unity each time a trigger is applied. A practical SPS should also
have a stable emission rate, be easy-to-use, should operate at room temperature and at high
repetition frequencies.

The most promising candidates for practical true SPS today are solid-state emitters, such
as quantum dots (QDs) [7, 8] or defect centres in diamond [9, 10]. QDs are available for a broad
range of wavelengths, including the telecom bands, can be excited optically or electrically and
are efficient, with coupling rates to a usable output mode of up to over 70% [11]. One major
drawback of QDs is until now the need for cryogenic cooling. Regarding defect centres in
diamond, the most intensely studied defect centre is the nitrogen-vacancy (NV) centre [9]. It
is formed by a substitutional nitrogen atom together with an adjacent vacancy. The NV centre
occurs in a neutral and a charged state [12]. In the following we only regard the negatively
charged NV centre. Its electronic structure is well understood [13, 14] and can be described
by a three-level model concerning its optical properties. Optical and electrical (neutral NV)
excitation was demonstrated [15, 16]. Also, another defect centre, the silicon-vacancy (SiV)
centre has been studied [10, 17]. It consists of a silicon impurity in a so-called split-vacancy-
configuration [18]. One key feature of defect centres is their optical stability and high quantum
yield even at room temperature. Whereas emission into the zero phonon line (ZPL) is a few per
cent for the NV centre (3% at cryogenic temperatures [19]), the SiV emits 70–80% of photons
into the ZPL. Both for NV and SiV centres high photon generation rates have been reported, for
the NV exceeding 2 Mcps [20], for the SiV exceeding 6 Mcps [10], all under continuous laser
excitation. Other, presumably Cr-related centres with potentially even higher count rates have
been investigated [21, 22], but their reliable fabrication is problematic and a full understanding
of their structural properties is missing. So far only the NV centre has been utilized as SPS in a
QKD experiment [23, 24].

In order to evaluate the applicability of defect centres as reliable sources for QIP, in
particular for QKD, it is desirable to use test-beds that allow for long-term measurements,
implementation of different protocols, as well as straightforward integration of different defect
centres. In this paper, we report the realization of such a testbed. It consists of a short free-space
transmission line combined with a compact SPS based on defect centres. The source relies on a
specialized confocal setup for stable optical excitation and efficient collection of single photons
from defect centres. Furthermore, it is designed in a way that it is easy to replace one kind of
defect centre by another. QKD experiments are performed with NV centres and for the first time
also with SiV centres.
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Figure 1. (a) Scheme and (b) photo of the compact confocal setup. The excitation laser
is focused with a high NA objective onto the sample which is either one of several
nanodiamonds spin-coated on a SIL or grown on a substrate. The emission is collected
by the same objective and then filtered by a dichroic beam splitter (exchangeable)
and longpass (LP) and shortpass (SP) filters to clean it from residual laser light or
fluorescence of the SIL or the substrate.

2. Compact and versatile design of the single photon source

The design of the source relies on a compact, portable and ready to use confocal setup. A ZrO2

solid immersion lens (SIL) can be utilized to enhance the collection of single photons emitted
from defect centres in nanodiamonds (NDs) spin-coated directly on the SIL. Details of the
fabrication of SILs with NV centres are provided in [20]. The source is built for single photon
emitters with a wavelength range from 600 to 800 nm. With this it allows for the implementation
of SPS using NV, SiV as well as Cr-based defect centres. Figure 1 shows a schematic (a) and a
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photograph (b) of the source which fits completely on an aluminum plate and has dimensions
of only 22.5 cm × 19 cm × 9 cm. In this way, the SPS is mobile and can easily be integrated
in different experimental setups. The setup is robust against mechanical vibrations and thermal
drifts due to its small size and compact mounting of all optical components. The generated
single photon beam can either be free space or fibre coupled by removal/addition of a single
mirror which is equipped with a magnetic base. The sample unit holding the defect centres can
either be the SIL with spin-coated defect centres or a substrate containing defect centres due to
a removable sample holder. The setup is equipped with broadband optics and thus suitable for
various defect centres, provided their emission wavelength is in the range of 600–800 nm. Only
the exchangeable dichroic mirror has to be adapted together with the suitable excitation source
and matched filters. The sample holder is mounted on a 3-axes piezo stage. In order to keep
track of the absolute position of the stage, sensors capable of detecting changes on a nanometre
scale are used (SmarAct System). With this system it is possible to focus on a well-defined
position on the sample with very high accuracy and stability.

3. Properties of colour centres used in the single photon source

In principle, any kind of colour centre can be employed in the source described in the previous
section. In the following, we focus on NV and silicon-vacancy (SiV) centres.

3.1. Nitrogen-vacancy centres in diamonds as single photon source

NVs have been proven to be stable and bright single photon emitters and have been extensively
studied and described elsewhere [9, 20, 25]. They have a broad emission spectrum from 600 to
800 nm. High count rates of up to 2.4 Mcps (cw excitation) and relatively high overall photon
yields (the ratio between excitation and detection rates) of up to 4.2% have been achieved [20].
The quality of single photon emission, in particular the contribution of multi-photon events
is routinely determined by measuring the second-order autocorrelation function (g(2)(τ )) in a
Hanbury–Brown Twiss (HBT) setup [26]. Although in the ideal case g(2)(τ = 0) = 0, a value of
g(2)(τ = 0) < 0.5 is generally accepted as a criterion for single photon emission. Values below
0.12 have been reported with NV defect centres [20]. In QKD it is favourable to have photons at
a well-defined instant of time, thus pulsed excitation of the defect centres is of interest. In such
a pulsed excitation scheme, using a green diode laser (PicoQuant LDH-P-FA-530 [27], 531 nm,
pulse width <100 ps), we achieved count rates of 8900 cps at an excitation rate of 1 MHz for
an NV centre in a ND which was spin-coated on a SIL. This corresponds to an overall photon
yield of 0.89% and a source efficiency of 2.9%. The latter is defined as the ratio of excitation
pulses resulting in a single photon without background in the desired optical mode, here the free
space beam of the QKD experiment. This value is determined for a given overall photon yield
by taking the overall transmission ηsetup of 0.31 of our setup, including the efficiency of ∼65%
of the avalanche photodiodes (APDs), into account. For the QKD experiment, the maximal
excitation rate was limited to frequencies up to 1 MHz by the modulation rate of the electro-
optical modulator (EOM) (see section 4). A g(2)(0) value under pulsed excitation of 0.09, clearly
indicating high purity single photon emission, is measured (figure 2(a)) using high resolution
time-correlation electronics (PicoHarp 300 from PicoQuant). A lifetime of 28.5 ± 1.5 ns is
calculated from the pulse shape.
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Figure 2. Measured intensities as a function of time for NV (a) and SiV (b) emission
under pulsed excitation to calculate g(2)(τ ). The excitation rates were 800 kHz and
1 MHz, respectively. The missing pulse at τ = 0 indicates single photon emission. From
the pulse shape we calculated a lifetime of the excited state of 28.5 ± 1.5 ns for the NV
and 3 ± 2 ns for the SiV.

3.2. Silicon-vacancy centres in diamonds as single photon source

A disadvantage of the NVs is their phonon-broadened emission spectrum and long lifetime in
the order of 20 ns, which limits the maximal excitation and emission rate. SiVs have a much
narrower, linearly polarized emission spectrum of about 1–2 nm at around 739 nm [10], due
to lower phonon coupling and a concentration of the emission into the ZPL, and a shorter
lifetime in the order of 1 ns, making them an interesting candidate for QKD with single photons,
especially for free space daylight operations [28]. There have been reports on high photon
emission rates of up to 6.2 Mcps using cw excitation and values of g(2)(0) below 0.05 [17].
Single SiV centres are created during chemical vapour deposition (CVD) growth of randomly
oriented NDs on iridium (Ir) films [10]. We excite our SiV sample with laser pulses from a
red diode laser (PicoQuant diode laser LDH-D-C-690, 687 nm, pulse width <100 ps) at an
excitation frequency of 1 MHz. With the brightest SiV centre we achieved a photon count rate
of 3700 cps and a g(2)(0) value of 0.04, see figure 2(b). From the pulse shape, a lifetime of
3 ± 2 ns is calculated. The overall photon yield was 0.37% and the plain source efficiency is thus
1.2%. The achievable count rate per excitation pulse was lower for the SiV centre compared
to the NV centre. Knowing that the collection efficiency of emitted photons from SiV NDs
grown on Ir-substrate can be very high [17], this hints a lower quantum efficiency. In [17], a
quantum efficiency between 1 and 9% was estimated. Compared to the NV centre, the excitation
frequency could be chosen to be much higher for the SiV centre due to the shorter lifetime,
which could compensate for the lower quantum efficiency (cf section 6).

It is also observed that SiVs do not have the same stability as NVs under excitation. Some
of them bleach, probably due to photo-ionization, especially when excited at higher excitation
powers. It has been suggested to circumvent bleaching by creating free electrons close to the
sample by shining a blue laser at its vicinity [29]. Using surface treatment or a better control of
the impurity content of the samples might also be a way to produce more photostable SiVs in
the future [17].
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Figure 3. Schematics of the QKD testbed. On Alice’s side, single photons are emitted
from the source (SPS) and prepared in a well-defined polarization state by a λ/2 plate
and a polarization filter (PF). After collimation and spatial mode cleaning by two lenses
(L) and a pinhole (PH), they pass through an electro-optical modulator (EOM 1). On
Bob’s side, the beam is recollimated by two lenses and then passes through a second
modulator (EOM 2). Then, the polarization is analysed by a PBS and a polarization filter
in the reflected mode of the PBS, which has a slightly reduced contrast compared to the
transmitted mode. After passing through a lens for focusing, the photons are detected
on one of two APDs.

4. Setup of QKD testbed

The setup is shown in figure 3. The emitted free space photons from the SPS are initially
prepared in a linear polarization state by passing through a linear polarization filter after a λ/2
plate which is adjusted to maximize the count rate. After passing through a pinhole for further
spatial mode cleaning, the photons impinge on the first EOM which is controlled by Alice. The
EOM acts as a λ/2 and λ/4 plate, respectively, depending on the applied voltage. In this way
two orthogonal linearly polarized photon states as well as two orthogonal circular polarization
states can be encoded on the incoming photons, compliant to the BB84 protocol [30]. After
passing through a lens system for recollimation, the photons pass through a second EOM, which
is controlled by Bob. Bob randomly chooses a measurement basis by setting the voltage such
that the EOM either does not modify the photons or acts as a λ/4 plate. A circular polarization
is thus transformed into a linear one or vice versa. The linear polarization state can then be
deterministically analysed in a system consisting of a polarizing beam splitter (PBS), a linear
polarization filter, compensating the non-perfect contrast of the PBS in reflection, and two APDs
(Perkin Elmer AQR). For the random bit and basis choice of Alice and Bob, quantum random
numbers from the online random number service of HU Berlin and PicoQuant GmbH8 are
used. The EOM is constructed in a way that it acts as a zero order waveplate. This minimizes
its wavelength dependency during the modulation of different polarization states. However,
especially when using the broadband NV centre as light source, possible dependencies between
wavelength and transmitted polarization state could open the door to side-channel attacks which
would have to be analysed in a way similar to the analysis of multiphotons (cf section 5 below,
especially the notion of ‘tagged’ photons). However, a thorough analysis of this problem is
beyond the scope of this paper.

8 QRNG online: http://qrng.physik.hu-berlin.de, see also [31].
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Table 1. Results of the QKD experiments with NVs and SiVs, each run for 300 s.

NV SiV

Repetition rate 1 MHz 1 MHz
Count rate 8.9 ± 0.1 kbit s−1 3.70 ± 0.04 kbit s−1

Sifted key rate 3.99 ± 0.05 kbit s−1 1.51 ± 0.02 kbit s−1

QBER 3.0 ± 0.2% 3.2 ± 0.2%
Secured key rate 2.6 kbit s−1 1 kbit s−1

5. Experimental results

In order to test the suitability of two different single photon sources we ran the BB84 protocol
in the QKD setup.

The experimentally obtained parameters are summarized in table 1. With the brightest NV
centre, emitting at a count rate of 8.9 kcps, a sifted key rate of 3.99 kbit s−1 at a quantum bit
error ratio (QBER) of 3% was achieved. The raw key was then further processed using the
CASCADE protocol [32], resulting in a secure key rate of 2.6 kbit s−1. The CASCADE protocol
is an efficient post-processing protocol for the sifted key aiming at minimizing discrepancies
between Alice and Bobs keys while at the same time minimizing Eves possible information
about it. It consists of two steps: error correction by parity comparison between Alice and
Bob and subsequent dilution of Eves information in the so-called privacy amplification. This
privacy amplification is realized by a randomly chosen function belonging to a special class of
hash functions. The algorithm which was used here was implemented by ourselves and can be
downloaded on our website9. The observed QBER can be explained by the limited contrast of
the polarization optics and the EOMs. The sifted keyrate would be comparable to the ones
reported in previous QKD experiments with NV centres [23, 24] if one would account for
the lower repetition frequency used here due to technical reasons by using a scaling factor.
The secured keyrate however would fall short of the one reported for the aforementioned
experiments because of a slightly higher QBER in our experiment and thus a more keybit
consuming postprocessing.

Using the brightest stable SiV, emitting at a count rate of 3.7 kcps, we found a sifted key
rate of 1.51 kbit s−1, a QBER of 3.2% and a resulting secure key rate of 1 kbit s−1. Both keys
were transmitted at an experimental clock rate of 1 MHz.

Both NV and SiV centres were running with a stable emission rate over several hours,
which was the necessary time to find the right EOM settings for transmission. This shows the
long-term stability of our setup.

It is interesting to have a look at the source efficiencies and the g(2)(0) values of the SPS
and their consequences on security concerning multiphoton events. An upper bound on the
probability pm to have multiphoton events in pulses emitted from a sub-Poisson light source is
given by [33],

pm 6
µ2g(2)(0)

2
, (1)

where µ is the mean photon number per pulse which is identical to the efficiency of the SPS to
emit a single photon into the desired mode. This upper bound can then be used to calculate a

9 CASCADE online: http://www.physik.hu-berlin.de/nano.
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Figure 4. Secure key rates as a function of channel loss achieved with the BB84 protocol
utilizing a true SPS with an NV centre (a) and a SiV centre (b) in blue. For comparison,
the key rate when using an attenuated laser without the decoy state protocol at the
optimized mean photon number µ ∼ ηtotal, where ηtotal is the overall transmission of
the setup, is shown in red and dashed. Also shown in green and dotted is the secure
key rate when using WCP together with the decoy state protocol with a mean photon
number of 0.5 (calculated as in [37]).

lower bound on the secure key rate R, which takes the insecurity of having multiphoton events
into account [34]:

R > q{−Qµ f (Eµ)H2(Eµ) + Qµ(1 − 1)(1 − H2(Eµ/(1 − 1))}. (2)

In this formula, q is an efficiency factor depending on the exact protocol and expresses the
randomness of the base choice, here it is 1/2, Qµ, the signal gain, is the fraction of detection
events at Bob’s side which is related to the signal with mean photon number µ10, f is the error
correction efficiency of the post-processing protocol and assumes a typical value of 1.22, Eµ

is the error rate of a signal with mean photon number µ, and H2(x)11 is the binary Shannon
information function [35]. 1 is the ratio of ‘tagged’ photons. ‘Tagged’ photons are photon
qubits emitted by a faulty source, wearing a ‘tag’ with readable information for the eavesdropper
revealing the actual basis of the qubit, cf [34]. When more than one photon is emitted at a time, it
carries the same information as its partner photon and can be regarded as a ‘tagged’ photon when
exploited by Eve in a PNS attack. For a single photon source, 1 = pm/pclick, with the detection
probability of a signal pclick ≈ µ · ηtotal + pdc [33]. ηtotal contains, besides the setup transmission
ηsetup (cf section 3.1), the transmission of the quantum channel. The dark count probability pdc

is in our setup 2.4 × 10−5. Figure 4 shows the results of these secure key rate calculations as a
function of the channel loss.

The secure key generation rate at 0 dB roughly reproduces our measured key rate after post-
processing. For comparison we also plotted the secure key rate of a potential experiment with
identical parameters (please note that for lasers repetition rates might be chosen to be higher
than particularly for the NV SPS), but with an attenuated laser instead of a single photon source
with a mean photon number of µ ∼ ηtotal, which is approximately optimal for an attenuated
laser without the decoy state protocol and when considering possible PNS attacks [36]. The
key rate is calculated as in equation (2), taking the multiphoton probability of a Poissonian
light source into account. Also, the key rate of an identical experiment with an attenuated laser

10 For an exact definition of Qµ, see [6].
11 H2(x) = −x log2(x) − (1 − x)log2(1 − x).
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source together with the decoy state protocol (the used mean photon number of 0.5 is calculated
as in [37]) is shown. At low loss, attenuated laser pulses without the decoy state protocol have
relatively high signal intensities and thus outperform our SPS, but at a certain channel loss
(>3.3 dB for the NV and >6.4 dB for the SiV, cf figure 4, translating into distances >8 km and
>16 km using a typical transmission of light through air in sea level of 0.4 dB km−1 [38]) the
SPS provides higher secure key rates and longer achievable transmission distances. This is due
to a lower number of multiphoton events in a true SPS compared to an attenuated classical pulse
of the same mean photon number. However, for the parameters achieved with single photon
sources based on defect centres an attenuated laser together with the decoy state protocol is still
favourable over our SPS regarding maximum key rates and achievable distances. This is because
the obtained efficiencies of the SPS are not high enough and at the same time the g(2)(0) value
not low enough to outperform WCP together with the decoy state protocol (cf section 6).

In this context, it is also interesting to note that even SPS sometimes have to be attenuated
to reduce the small, but in a real source still existing fraction of multi-photon events to achieve
the maximal possible transmission distance [33]. Even with high source efficiency, thus high
mean photon number per excitation, security can be compromised at certain distances if the
g(2)(0) value is not low enough. In fact for every g(2)(0) value and a given dark count rate of the
detectors, the maximal mean photon number to realize the longest distances can be estimated
after the following formula, taken from [33]:

µc =

√
2pdc

g(2)(0)
. (3)

The ideal case would be to have a SPS which is above this critical mean photon number
and to attenuate it in order to achieve the best rates at any distance. For our NV centre, we have
an efficiency of 0.029 and a g(2)(0) of 0.09 (cf section 3.1). The critical mean photon number
for this value of g(2)(0) is 0.039, a little above the given efficiency. There are examples of NV
centres with higher efficiencies [20] which would surpass their critical mean photon number.
For the SiV and its g(2)(0) value of 0.04, the efficiency of 0.012 (cf section 3.2) is below its
critical mean photon number of 0.035 due to the low quantum efficiency of the SiV.

6. Discussion and conclusion

Our measurements have shown that there are severe constraints regarding the applicability
of true single photon sources in QKD applications. Major requirements are a short
lifetime, a quantum efficiency near unity, and a strong suppression of multi-photon events.
Examples for sophisticated photon extraction architectures are plasmonically enhanced single
photon sources [39], layered dielectric structures [40] or three-dimensional light guiding
microstructures [41]. Since defect centres in NDs are point-like sources which can be easily
integrated in such structures, collection efficiencies into a usable output mode exceeding 95%
are realistic. In this case the internal quantum efficiency would still be a limitation. Recent
studies [42, 43] have shown that the quantum efficiency may vary significantly within different
NDs, but possibly emitters with more than 90% can be selected. An approach to enhance this
requires enhancement of the radiative rate due to the Purcell effect [19, 44] which is technically
more challenging for a room-temperature emitter [18]. For a higher suppression of multi-photon
events and thus a lower g2(0), improving the signal-to-noise ratio by improving the collection
and excitation efficiency through an appropriate optical setup of the SPS would be an important

9
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Figure 5. Secure key rates as a function of the channel losses of QKD experiments
with defect centres with ideal, realistic features. For these sources, quantum efficiencies
of 95% and photon yields of 10% (blue curve) and 95% (black curve) are assumed.
The g2(0) value is 0.005 (blue curve) and 0.0005 (black curve). For comparison, an
attenuated laser without (dashed red curve) and with (dotted green curve) decoy state
protocol is depicted as well. The repetition rate is 20 MHz for all sources. The inset
shows the g(2) value for a SiV for pulsed excitation at a repetition rate of 80 MHz. The
count rate is 230 kcps with g(2)(0) < 0.1.

step [20]. Also, near resonant excitation could be beneficial. Finally, it should be easier to
suppress multiphoton events if the emission is narrow band (e.g. as in the SiV [10] or Cr
centre [21] compared with the NV centre) and allows for better filtering of the signal against the
background. A suppression of multi-photon events should be easier if the emission is narrow
band (e.g. as in the SiV or Cr centre compared with the NV centre) and allows for better filtering
of the signal against the background.

In figure 5, we estimated the maximum possible secure key generation rates for a possible
future single photon source based on defect centres with enhanced efficiencies and lower
probability of emitting multiple photons at a time. For this, we used a realistic repetition rate of
20 MHz.

As already mentioned, the SiV would allow for much higher excitation rates than shown
here, which would lead to much higher key rates. The inset of figure 5 shows the g(2) value for
an SiV for pulsed excitation at a repetition rate of 80 MHz, featuring a g(2)(0) < 0.1 at a count
rate of 230 kcps.

Figure 5 demonstrates that single photon sources based on defect centres in diamond
could outperform attenuated light sources in the future under optimistic but not unrealistic
assumptions.

In general, our QKD testbed allows for evaluations and feasibility tests of quantum light
sources as stepping stones for a technology to move from research testbeds to mainstream
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operations. A testbed is a step in between proof-of-principle experiments and novel commercial
components outperforming existing ones. Often some specific problems with a system under
study are only apparent and can only by attacked in a realistic architecture. Examples are
possible side-channel attacks as a potential problem with any single photon source with a
wide spectrum. Such and similar problems should be studied in testbeds before quantum
light sources can be accepted as commercial products. Feasibility and cost-efficiency depend
on the application and have to be well balanced. For example a recent demonstration of
entanglement between distant NV centres [45] has introduced this system as platform for
quantum repeaters [46]. If no practical alternative to long-distance QKD appears then cost
might not be the main concern. Instead increasing the efficiency, stability, and maintenance-free
operation are the main parameters to be optimized. The latter two have been addressed in [47]
and are also crucial for possible air- or space-based single photon sources. Finally, novel cheaper
ways to fabricate efficient single photon sources based on defect centres in plastic structures
have been explored [41]. In conclusion there could be several new architectures of QIP where
efficient quantum light sources are needed [48] in addition to protocols which allow for classical
attenuated sources.

In summary, we implemented a QKD experiment with a compact SPS setup using defect
centres. The setup of the source is such that it can easily be deployed in various QIP experiments.
NV and SiV centres are used and can easily be interchanged within the experiment. SiV
centres are potentially interesting for QIP applications due to their narrow spectral emission
bandwidth but still suffer from drawbacks concerning their efficiency and their stability, which
have to be overcome in the future. Together with a thorough security analysis of the QKD
experiment, taking into account the source efficiency as well as its g(2)(0) value, we discussed
the requirement to test quantum light sources in realistic architectures.
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