7 research outputs found

    Transbilayer distribution of phospholipids in bacteriophage membranes

    Get PDF
    AbstractWe have previously demonstrated that the membranes of several bacteriophages contain more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host membrane from where they are derived. Here, we determined the transbilayer distribution of PG and PE in the membranes of bacteriophages PM2, PRD1, Bam35 and phi6 using selective modification of PG and PE in the outer membrane leaflet with sodium periodate or trinitrobenzene sulfonic acid, respectively. In phi6, the transbilayer distributions of PG, PE and cardiolipin could also be analyzed by selective hydrolysis of the lipids in the outer leaflet by phospholipase A2. We used electrospray ionization mass-spectrometry to determine the transbilayer distribution of phospholipid classes and individual molecular species. In each bacteriophage, PG was enriched in the outer membrane leaflet and PE in the inner one (except for Bam35). Only modest differences in the transbilayer distribution between different molecular species were observed. The effective shape and charge of the phospholipid molecules and lipid–protein interactions are likely to be most important factors driving the asymmetric distribution of phospholipids in the phage membranes. The results of this first systematic study on the phospholipid distribution in bacteriophage membranes will be very helpful when interpreting the accumulating high-resolution data on these organisms

    New, Closely Related Haloarchaeal Viral Elements with Different Nucleic Acid Types▿ ‡

    No full text
    During the search for haloarchaeal viruses, we isolated and characterized a new pleomorphic lipid-containing virus, Haloarcula hispanica pleomorphic virus 1 (HHPV-1), that infects the halophilic archaeon Haloarcula hispanica. The virus contains a circular double-stranded DNA genome of 8,082 bp in size. The organization of the genome shows remarkable synteny and amino acid sequence similarity to the genome and predicted proteins of the halovirus HRPV-1, a pleomorphic single-stranded DNA virus that infects a halophilic archaeon Halorubrum sp. Analysis of the two halovirus sequences, as well as the entire nucleotide sequence of the 10.8-kb pHK2-plasmid and a 12.6-kb chromosomal region in Haloferax volcanii, allows us to suggest a new group of closely related viruses with genomes of either single-stranded or double-stranded DNA. Currently, closely related viruses are considered to have the same genome type. Our observation clearly contradicts this categorization and indicates that we should reconsider the way we classify viruses. Our results also provide a new example of related viruses where the viral structural proteins have not diverged as much as the proteins associated with genome replication. This result further strengthens the proposal for higher-order classification to be based on virion architecture rather than on genome type or replication mechanism

    The Closest Relatives of Icosahedral Viruses of Thermophilic Bacteria Are among Viruses and Plasmids of the Halophilic Archaea▿

    No full text
    We have sequenced the genome and identified the structural proteins and lipids of the novel membrane-containing, icosahedral virus P23-77 of Thermus thermophilus. P23-77 has an ∼17-kb circular double-stranded DNA genome, which was annotated to contain 37 putative genes. Virions were subjected to dissociation analysis, and five protein species were shown to associate with the internal viral membrane, while three were constituents of the protein capsid. Analysis of the bacteriophage genome revealed it to be evolutionarily related to another Thermus phage (IN93), archaeal Halobacterium plasmid (pHH205), a genetic element integrated into Haloarcula genome (designated here as IHP for integrated Haloarcula provirus), and the Haloarcula virus SH1. These genetic elements share two major capsid proteins and a putative packaging ATPase. The ATPase is similar with the ATPases found in the PRD1-type viruses, thus providing an evolutionary link to these viruses and furthering our knowledge on the origin of viruses

    Constituents of SH1, a Novel Lipid-Containing Virus Infecting the Halophilic Euryarchaeon Haloarcula hispanica

    No full text
    Recent studies have indicated that a number of bacterial and eukaryotic viruses that share a common architectural principle are related, leading to the proposal of an early common ancestor. A prediction of this model would be the discovery of similar viruses that infect archaeal hosts. Our main interest lies in icosahedral double-stranded DNA (dsDNA) viruses with an internal membrane, and we now extend our studies to include viruses infecting archaeal hosts. While the number of sequenced archaeal viruses is increasing, very little sequence similarity has been detected between bacterial and eukaryotic viruses. In this investigation we rigorously show that SH1, an icosahedral dsDNA virus infecting Haloarcula hispanica, possesses lipid structural components that are selectively acquired from the host pool. We also determined the sequence of the 31-kb SH1 genome and positively identified genes for 11 structural proteins, with putative identification of three additional proteins. The SH1 genome is unique and, except for a few open reading frames, shows no detectable similarity to other published sequences, but the overall structure of the SH1 virion and its linear genome with inverted terminal repeats is reminiscent of lipid-containing dsDNA bacteriophages like PRD1
    corecore