86 research outputs found

    Dystonia Type 6 Gene Product Thap1: Identification Of a 50 kDa DNA-binding Species In Neuronal Nuclear Fractions

    Get PDF
    Mutations in THAP1 result in dystonia type 6, with partial penetrance and variable phenotype. The goal of this study was to examine the nature and expression pattern of the protein product(s) of the Thap1 transcription factor (DYT6 gene) in mouse neurons, and to study the regional and developmental distribution, and subcellular localization of Thap1 protein. The goal was accomplished via overexpression and knock-down of Thap1 in the HEK293T cell line and in mouse striatal primary cultures and western blotting of embryonic Thap1-null tissue. The endogenous and transduced Thap1 isoforms were characterized using three different commercially available anti-Thap1 antibodies and validated by immunoprecipitation and DNA oligonucleotide affinity chromatography. We identified multiple, novel Thap1 species of apparent Mr 32 kDa, 47 kDa, and 50–52 kDa in vitro and in vivo, and verified the previously identified species at 29–30 kDa in neurons. The Thap1 species at the 50 kDa size range was exclusively detected in murine brain and testes and were located in the nuclear compartment. Thus, in addition to the predicted 25 kDa apparent Mr, we identified Thap1 species with greater apparent Mr that we speculate may be a result of posttranslational modifications. The neural localization of the 50 kDa species and its nuclear compartmentalization suggests that these may be key Thap1 species controlling neuronal gene transcription. Dysfunction of the neuronal 50 kDa species may therefore be implicated in the pathogenesis of DYT6

    Neural correlates of abnormal sensory discrimination in laryngeal dystonia

    Get PDF
    AbstractAberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder

    Cervical dystonia incidence and diagnostic delay in a multiethnic population.

    Get PDF
    BackgroundCurrent cervical dystonia (CD) incidence estimates are based on small numbers in relatively ethnically homogenous populations. The frequency and consequences of delayed CD diagnosis is poorly characterized.ObjectivesTo determine CD incidence and characterize CD diagnostic delay within a large, multiethnic integrated health maintenance organization.MethodsWe identified incident CD cases using electronic medical records and multistage screening of more than 3 million Kaiser Permanente Northern California members from January 1, 2003, to December 31, 2007. A final diagnosis was made by movement disorders specialist consensus. Diagnostic delay was measured by questionnaire and health utilization data. Incidence rates were estimated assuming a Poisson distribution of cases and directly standardized to the 2000 U.S. census. Multivariate logistic regression models were employed to assess diagnoses and behaviors preceding CD compared with matched controls, adjusting for age, sex, and membership duration.ResultsCD incidence was 1.18/100,000 person-years (95% confidence interval [CI], 0.35-2.0; women, 1.81; men, 0.52) based on 200 cases over 15.4 million person-years. Incidence increased with age. Half of the CD patients interviewed reported diagnostic delay. Diagnoses more common in CD patients before the index date included essential tremor (odds ratio [OR] 68.1; 95% CI, 28.2-164.5), cervical disc disease (OR 3.83; 95% CI, 2.8-5.2), neck sprain/strain (OR 2.77; 95% CI, 1.99-3.62), anxiety (OR 2.24; 95% CI, 1.63-3.11) and depression (OR 1.94; 95% CI, 1.4-2.68).ConclusionsCD incidence is greater in women and increases with age. Diagnostic delay is common and associated with adverse effects. © 2019 International Parkinson and Movement Disorder Society

    Mutations in the Na+/K+-ATPase α3 Gene ATP1A3 Are Associated with Rapid-Onset Dystonia Parkinsonism

    Get PDF
    AbstractRapid-onset dystonia-parkinsonism (RDP, DYT12) is a distinctive autosomal-dominant movement disorder with variable expressivity and reduced penetrance characterized by abrupt onset of dystonia, usually accompanied by signs of parkinsonism. The sudden onset of symptoms over hours to a few weeks, often associated with physical or emotional stress, suggests a trigger initiating a nervous system insult resulting in permanent neurologic disability. We report the finding of six missense mutations in the gene for the Na+/K+-ATPase α3 subunit (ATP1A3) in seven unrelated families with RDP. Functional studies and structural analysis of the protein suggest that these mutations impair enzyme activity or stability. This finding implicates the Na+/K+ pump, a crucial protein responsible for the electrochemical gradient across the cell membrane, in dystonia and parkinsonism

    Rapid-onset dystonia-parkinsonism associated with the I758S mutation of the ATP1A3 gene: a neuropathologic and neuroanatomical study of four siblings

    Get PDF
    Rapid-onset dystonia-parkinsonism (RDP) is a movement disorder associated with mutations in the ATP1A3 gene. Signs and symptoms of RDP commonly occur in adolescence or early adulthood and can be triggered by physical or psychological stress. Mutations in ATP1A3 are also associated with alternating hemiplegia of childhood (AHC). The neuropathologic substrate of these conditions is unknown. The central nervous system of four siblings, three affected by RDP and one asymptomatic, all carrying the I758S mutation in the ATP1A3 gene, was analyzed. This neuropathologic study is the first carried out in ATP1A3 mutation carriers, whether affected by RDP or AHC. Symptoms began in the third decade of life for two subjects and in the fifth for another. The present investigation aimed at identifying, in mutation carriers, anatomical areas potentially affected and contributing to RDP pathogenesis. Comorbid conditions, including cerebrovascular disease and Alzheimer disease, were evident in all subjects. We evaluated areas that may be relevant to RDP separately from those affected by the comorbid conditions. Anatomical areas identified as potential targets of I758S mutation were globus pallidus, subthalamic nucleus, red nucleus, inferior olivary nucleus, cerebellar Purkinje and granule cell layers, and dentate nucleus. Involvement of subcortical white matter tracts was also evident. Furthermore, in the spinal cord, a loss of dorsal column fibers was noted. This study has identified RDP-associated pathology in neuronal populations, which are part of complex motor and sensory loops. Their involvement would cause an interruption of cerebral and cerebellar connections which are essential for maintenance of motor control. Electronic supplementary material The online version of this article (doi:10.1007/s00401-014-1279-x) contains supplementary material, which is available to authorized users

    G2019S mutation in the leucine-rich repeat kinase 2 gene is not associated with multiple system atrophy

    Full text link
    Multiple system atrophy (MSA) is characterized clinically by Parkinsonism, cerebellar dysfunction, and autonomic impairment. Multiple mutations in the LRRK2 gene are associated with parkinsonian disorders, and the most common one, the G2019S mutation, has been found in ∌1% of sporadic cases of Parkinsonism. In a well-characterized cohort of 136 subjects with probable MSA and 110 neurologically evaluated control subjects, none carried the G2019S mutation. We conclude that the G2019S mutation in the LRRK2 gene is unlikely to be associated with MSA. © 2007 Movement Disorder SocietyPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56014/1/21343_ftp.pd

    The North American Multiple System Atrophy Study Group

    Full text link
    The North American Multiple System Atrophy Study Group involves investigators in 12 US medical centers funded by a grant from the National Institutes of Health. The objectives are to examine the environmental and genetic risk factors for MSA; elucidate pathogenic mechanisms underlying the disorder; and refine evaluations used for assessment. During its first year, the group enrolled 87 patients, implemented four cores, and initiated four scientific projects. Most patients among the 87 had parkinsonian features, which frequently began asymmetrically and remained asymmetrical; one-third responded to levodopa and many developed levodopa complications; almost two-thirds of the patients had cerebellar dysfunction, of these 90% had ataxia; urinary incontinence occurred commonly, and sleep disorders affected most. The investigators studied the effects of oxidative and nitrative stress upon the formation of alpha-synuclein inclusions; generated transgenic models of alpha-synuclein accumulation that recapitulate several behavioral and neuropathological features of MSA; and compared the severity of the autonomic features of MSA, Parkinson’s disease and dementia with Lewy bodies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41653/1/702_2005_Article_381.pd

    Evaluation of 22 genetic variants with Crohn's Disease risk in the Ashkenazi Jewish population: a case-control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Crohn's disease (CD) has the highest prevalence among individuals of Ashkenazi Jewish (AJ) descent compared to non-Jewish Caucasian populations (NJ). We evaluated a set of well-established CD-susceptibility variants to determine if they can explain the increased CD risk in the AJ population.</p> <p>Methods</p> <p>We recruited 369 AJ CD patients and 503 AJ controls, genotyped 22 single nucleotide polymorphisms (SNPs) at or near 10 CD-associated genes, <it>NOD2</it>, <it>IL23R</it>, <it>IRGM</it>, <it>ATG16L1</it>, <it>PTGER4</it>, <it>NKX2-3</it>, <it>IL12B</it>, <it>PTPN2</it>, <it>TNFSF15 </it>and <it>STAT3</it>, and assessed their association with CD status. We generated genetic scores based on the risk allele count alone and the risk allele count weighed by the effect size, and evaluated their predictive value.</p> <p>Results</p> <p>Three <it>NOD2 </it>SNPs, two <it>IL23R </it>SNPs, and one SNP each at <it>IRGM </it>and <it>PTGER4 </it>were independently associated with CD risk. Carriage of 7 or more copies of these risk alleles or the weighted genetic risk score of 7 or greater correctly classified 92% (allelic count score) and 83% (weighted score) of the controls; however, only 29% and 47% of the cases were identified as having the disease, respectively. This cutoff was associated with a >4-fold increased disease risk (p < 10e-16).</p> <p>Conclusions</p> <p>CD-associated genetic risks were similar to those reported in NJ population and are unlikely to explain the excess prevalence of the disease in AJ individuals. These results support the existence of novel, yet unidentified, genetic variants unique to this population. Understanding of ethnic and racial differences in disease susceptibility may help unravel the pathogenesis of CD leading to new personalized diagnostic and therapeutic approaches.</p
    • 

    corecore