436 research outputs found

    Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease

    Get PDF
    Cardiogenesis in mammals requires exquisite control of gene expression and faulty regulation of transcriptional programs underpins congenital heart disease (CHD), the most common defect among live births. Similarly, many adult cardiac diseases involve transcriptional changes and sometimes have a developmental basis. Long non‐coding RNAs (lncRNAs) are a novel class of transcripts that regulate cellular processes by controlling gene expression; however, detailed insights into their biological and mechanistic functions are only beginning to emerge. Here, we discuss recent findings suggesting that lncRNAs are important factors in regulation of mammalian cardiogenesis and in the pathogenesis of CHD as well as adult cardiac disease. We also outline potential methodological and conceptual considerations for future studies of lncRNAs in the heart and other contexts.National Heart, Lung, and Blood Institute (Bench to Bassinet Program U01HL098179)National Heart, Lung, and Blood Institute (Bench to Bassinet Program U01HL098188

    Prediction and validation of a mechanism to control the threshold for inhibitory synaptic plasticity

    Get PDF
    Synaptic plasticity, neuronal activity-dependent sustained alteration of the efficacy of synaptic transmission, underlies learning and memory. Activation of positive-feedback signaling pathways by an increase in intracellular Ca2+ concentration ([Ca2+]i) has been implicated in synaptic plasticity. However, the mechanism that determines the [Ca2+]i threshold for inducing synaptic plasticity is elusive. Here, we developed a kinetic simulation model of inhibitory synaptic plasticity in the cerebellum, and systematically analyzed the behavior of intricate molecular networks composed of protein kinases, phosphatases, etc. The simulation showed that Ca2+/calmodulin-dependent protein kinase II (CaMKII), which is essential for the induction of synaptic plasticity, was persistently activated or suppressed in response to different combinations of stimuli. The sustained CaMKII activation depended on synergistic actions of two positive-feedback reactions, CaMKII autophosphorylation and CaMKII-mediated inhibition of a CaM-dependent phosphodiesterase, PDE1. The simulation predicted that PDE1-mediated feedforward inhibition of CaMKII predominantly controls the Ca2+ threshold, which was confirmed by electrophysiological experiments in primary cerebellar cultures. Thus, combined application of simulation and experiments revealed that the Ca2+ threshold for the cerebellar inhibitory synaptic plasticity is primarily determined by PDE1

    IGF-1 and IGF-Binding Proteins and Bone Mass, Geometry, and Strength: Relation to Metabolic Control in Adolescent Girls With Type 1 Diabetes

    Get PDF
    Children and adolescents with poorly controlled type 1 diabetes mellitus (T1DM) are at risk for decreased bone mass. Growth hormone (GH) and its mediator, IGF-1, promote skeletal growth. Recent observations have suggested that children and adolescents with T1DM are at risk for decreased bone mineral acquisition. We examined the relationships between metabolic control, IGF-1 and its binding proteins (IGFBP-1, -3, -5), and bone mass in T1DM in adolescent girls 12–15 yr of age with T1DM (n = 11) and matched controls (n = 10). Subjects were admitted overnight and given a standardized diet. Periodic blood samples were obtained, and bone measurements were performed. Serum GH, IGFBP-1 and -5, glycosylated hemoglobin (HbA1c), glucose, and urine magnesium levels were higher and IGF-1 values were lower in T1DM compared with controls (p < 0.05). Whole body BMC/bone area (BA), femoral neck areal BMD (aBMD) and bone mineral apparent density (BMAD), and tibia cortical BMC were lower in T1DM (p < 0.05). Poor diabetes control predicted lower IGF-1 (r2 = 0.21) and greater IGFBP-1 (r2 = 0.39), IGFBP-5 (r2 = 0.38), and bone-specific alkaline phosphatase (BALP; r2 = 0.41, p < 0.05). Higher urine magnesium excretion predicted an overall shorter, lighter skeleton, and lower tibia cortical bone size, mineral, and density (r2 = 0.44–0.75, p < 0.05). In the T1DM cohort, earlier age at diagnosis was predictive of lower IGF-1, higher urine magnesium excretion, and lighter, thinner cortical bone (r2 ≥ 0.45, p < 0.01). We conclude that poor metabolic control alters the GH/IGF-1 axis, whereas greater urine magnesium excretion may reflect subtle changes in renal function and/or glucosuria leading to altered bone size and density in adolescent girls with T1DM

    Acute Cellular Alterations in the Hippocampus After Status Epilepticus

    Full text link
    The critical, fundamental mechanisms that determine the emergence of status epilepticus from a single seizure and the prolonged duration of status epilepticus are uncertain. However, several general concepts of the pathophysiology of status epilepticus have emerged: (a) the hippocampus is consistently activated during status epilepticus; (b) loss of GABA-mediated inhibitory synaptic transmission in the hippocampus is critical for emergence of status epilepticus; and, finally (c) glutamatergic excitatory synaptic transmission is important in sustaining status epilepticus. This review focuses on the alteration of GABAergic inhibition in the hippocampus that occurs during the prolonged seizures of status epilepticus. If reduction in GABAergic inhibition leads to development of status epilepticus, enhancement of GABAergic inhibition would be expected to interrupt status epilepticus. Benzodiazepines and barbiturates are both used in the treatment of status epilepticus and both drugs enhance GABA A receptor-mediated inhibition. However, patients often become refractory to benzodiazepines when seizures are prolonged, and barbiturates are often then used for these refractory cases of status epilepticus. Recent evidence suggests the presence of multiple GABA A receptor isoforms in the hippocampus with different sensitivity to benzodiazepines but similar sensitivity to barbiturates, thus explaining why the two drug classes might have different clinical effects. In addition, rapid functional plasticity of GABA A receptors has been demonstrated to occur during status epilepticus in rats. During status epilepticus, there was a substantial reduction of diazepam potency for termination of the seizures. The loss of sensitivity of the animals to diazepam during status epilepticus was accompanied by an alteration in the functional properties of hippocampal dentate granule cell GABA A receptors. Dentate granule cell GABA A receptor currents from rats undergoing status epilepticus had reduced sensitivity to diazepam and zinc but normal sensitivity to GABA and pentobarbital. Therefore, the prolonged seizures of status epilepticus rapidly altered the functional properties of hippocampal dentate granule cell GABA A receptors, possibly explaining why benzodiazepines and barbiturates may not be equally effective during treatment of the prolonged seizures of status epilepticus. A comprehensive understanding of the cellular and molecular events leading to the development, maintenance, and cytotoxicity of status epilepticus should permit development of more effective treatment strategies and reduction in the mortality and morbidity of status epilepticus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65664/1/j.1528-1157.1999.tb00873.x.pd

    Who's minding the shop? The role of Canadian research ethics boards in the creation and uses of registries and biobanks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amount of research utilizing health information has increased dramatically over the last ten years. Many institutions have extensive biobank holdings collected over a number of years for clinical and teaching purposes, but are uncertain as to the proper circumstances in which to permit research uses of these samples. Research Ethics Boards (REBs) in Canada and elsewhere in the world are grappling with these issues, but lack clear guidance regarding their role in the creation of and access to registries and biobanks.</p> <p>Methods</p> <p>Chairs of 34 REBS and/or REB Administrators affiliated with Faculties of Medicine in Canadian universities were interviewed. Interviews consisted of structured questions dealing with diabetes-related scenarios, with open-ended responses and probing for rationales. The two scenarios involved the development of a diabetes registry using clinical encounter data across several physicians' practices, and the addition of biological samples to the registry to create a biobank.</p> <p>Results</p> <p>There was a wide range of responses given for the questions raised in the scenarios, indicating a lack of clarity about the role of REBs in registries and biobanks. With respect to the creation of a registry, a minority of sites felt that consent was not required for the information to be entered into the registry. Whether patient consent was required for information to be entered into the registry and the duration for which the consent would be operative differed across sites. With respect to the creation of a biobank linked to the registry, a majority of sites viewed biobank information as qualitatively different from other types of personal health information. All respondents agreed that patient consent was needed for blood samples to be placed in the biobank but the duration of consent again varied.</p> <p>Conclusion</p> <p>Participants were more attuned to issues surrounding biobanks as compared to registries and demonstrated a higher level of concern regarding biobanks. As registries and biobanks expand, there is a need for critical analysis of suitable roles for REBs and subsequent guidance on these topics. The authors conclude by recommending REB participation in the creation of registries and biobanks and the eventual drafting of comprehensive legislation.</p

    What People Believe about How Memory Works: A Representative Survey of the U.S. Population

    Get PDF
    Incorrect beliefs about the properties of memory have broad implications: The media conflate normal forgetting and inadvertent memory distortion with intentional deceit, juries issue verdicts based on flawed intuitions about the accuracy and confidence of testimony, and students misunderstand the role of memory in learning. We conducted a large representative telephone survey of the U.S. population to assess common beliefs about the properties of memory. Substantial numbers of respondents agreed with propositions that conflict with expert consensus: Amnesia results in the inability to remember one's own identity (83% of respondents agreed), unexpected objects generally grab attention (78%), memory works like a video camera (63%), memory can be enhanced through hypnosis (55%), memory is permanent (48%), and the testimony of a single confident eyewitness should be enough to convict a criminal defendant (37%). This discrepancy between popular belief and scientific consensus has implications from the classroom to the courtroom

    Autism as a disorder of neural information processing: directions for research and targets for therapy

    Get PDF
    The broad variation in phenotypes and severities within autism spectrum disorders suggests the involvement of multiple predisposing factors, interacting in complex ways with normal developmental courses and gradients. Identification of these factors, and the common developmental path into which theyfeed, is hampered bythe large degrees of convergence from causal factors to altered brain development, and divergence from abnormal brain development into altered cognition and behaviour. Genetic, neurochemical, neuroimaging and behavioural findings on autism, as well as studies of normal development and of genetic syndromes that share symptoms with autism, offer hypotheses as to the nature of causal factors and their possible effects on the structure and dynamics of neural systems. Such alterations in neural properties may in turn perturb activity-dependent development, giving rise to a complex behavioural syndrome many steps removed from the root causes. Animal models based on genetic, neurochemical, neurophysiological, and behavioural manipulations offer the possibility of exploring these developmental processes in detail, as do human studies addressing endophenotypes beyond the diagnosis itself

    Neural Correlates of Threat Perception: Neural Equivalence of Conspecific and Heterospecific Mobbing Calls Is Learned

    Get PDF
    Songbird auditory areas (i.e., CMM and NCM) are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise [1]–[2]. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators [3]. Mobbing calls produced in response to smaller, higher-threat predators contain more “D” notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators [4]. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG) expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned

    Skeletal muscle gene expression in response to resistance exercise: sex specific regulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The molecular mechanisms underlying the sex differences in human muscle morphology and function remain to be elucidated. The sex differences in the skeletal muscle transcriptome in both the resting state and following anabolic stimuli, such as resistance exercise (RE), might provide insight to the contributors of sexual dimorphism of muscle phenotypes. We used microarrays to profile the transcriptome of the biceps brachii of young men and women who underwent an acute unilateral RE session following 12 weeks of progressive training. Bilateral muscle biopsies were obtained either at an early (4 h post-exercise) or late recovery (24 h post-exercise) time point. Muscle transcription profiles were compared in the resting state between men (n = 6) and women (n = 8), and in response to acute RE in trained exercised vs. untrained non-exercised control muscle for each sex and time point separately (4 h post-exercise, n = 3 males, n = 4 females; 24 h post-exercise, n = 3 males, n = 4 females). A logistic regression-based method (LRpath), following Bayesian moderated t-statistic (IMBT), was used to test gene functional groups and biological pathways enriched with differentially expressed genes.</p> <p>Results</p> <p>This investigation identified extensive sex differences present in the muscle transcriptome at baseline and following acute RE. In the resting state, female muscle had a greater transcript abundance of genes involved in fatty acid oxidation and gene transcription/translation processes. After strenuous RE at the same relative intensity, the time course of the transcriptional modulation was sex-dependent. Males experienced prolonged changes while females exhibited a rapid restoration. Most of the biological processes involved in the RE-induced transcriptional regulation were observed in both males and females, but sex specificity was suggested for several signaling pathways including activation of notch signaling and TGF-beta signaling in females. Sex differences in skeletal muscle transcriptional regulation might implicate a mechanism behind disproportional muscle growth in males as compared with female counterparts after RE training at the same relative intensity.</p> <p>Conclusions</p> <p>Sex differences exist in skeletal muscle gene transcription both at rest and following acute RE, suggesting that sex is a significant modifier of the transcriptional regulation in skeletal muscle. The findings from the present study provide insight into the molecular mechanisms for sex differences in muscle phenotypes and for muscle transcriptional regulation associated with training adaptations to resistance exercise.</p
    • …
    corecore