472 research outputs found

    Numerical investigation of transient hydrothermal processes around intrusions: heat-transfer and fluid-circulation controlled mineralization patterns.

    Get PDF
    International audienceNew insights on the circulation of fluids around magmatic intrusions have been obtained through coupled hydrothermal numerical modelling that takes into account i) a continuous variation of permeability with depth, ii) the period of intrusion emplacement, iii) the physical likelihood of ore deposition using a restricted rock alteration index, and iv) the so-far unexplored pluton floor, and then comparing the results against well-constrained natural cases showing different emplacement depths, high permeability zones (cracked thermal aureoles), faults and plutonic apexes. We show that emplacement depth is a key physical parameter controlling the extent and geometries of advective heat dissipation zones, and that shallow apexes strongly modify the fluid-flow pattern by acting as a focus for convective fluids and mineralization zones. We also show that the cooling phase is not the main convective phase for large plutons commonly associated with long-lived magma emplacement; major advective heat dissipation and mineral deposition zones may also develop before and during the hottest phase of the emplacement, i.e. before magma crystallization. The comparison with natural cases shows that we successfully reproduce, in space and time, the physical conditions required for mineral deposition. In particular, extensional detachment is able to restrain and modify classical fluid-flow patterns induced by coeval intrusion. Finally, even though lacking chemical arguments, we conclude that convection induced by granite emplacement plays a major role in the genesis of granite-related Au deposits. Moreover, the formation of this type of deposit is favoured and controlled by the presence of a fractured thermal aureole around the intrusion

    Combination of Numerical Tools to Link Deep Temperatures, Geological Structures and Fluid Flow in Sedimentary Basins: Application to the Thermal Anomalies of the Provence Basin (South-East France)

    Get PDF
    International audienceIn the Provence basin, south-eastern France, more than 230 Bottom Hole Temperature (BHT) data have been compiled and corrected for transient disturbances to provide a thermal model of this Mesozoic to Cenozoic sedimentary basin. The thermal gradient of the area averages 29.9°C/km (32.5°C/km in all France), but some places show gradients reaching 36°C/km or 22°C/km. To characterize thermal anomalies, a three-dimensional model of the temperatures was built between the surface and 5km depth, allowing us to elaborate sets of thermal maps and cross-sections. The newly identified temperature anomalies may reach temperature difference up to 40°C at 3km depth through the basin. After attempting to find correlations between thermal anomalies and large scale features (Moho depths, sediment cover thickness), it appears that fluid circulation may better explain locations, amplitudes and wavelengths of thermal anomalies along faulted zones. In fact, spatial evolution of anomalous cold/warm zones follow directions of main faulted zones. In addition, it is shown that the account of a depth-dependent permeability allows the superimposition of positive and negative thermal anomalies. Away from permeable zones, thermal anomalies should be explained by conductive processes, among which heat refraction due to thermal conductivity contrasts may be significant. In particular, anisotropy of thermal conductivity of clayey formation is shown to enable the development of thermal anomalies similar to those observed between permeable zones. Evolution of fluid circulation in faulted zones (involving enhanced vertical heat transfer) combined with thick anisotropic sediments (involving enhanced horizontal heat transfer) may explain complex thermal patterns deduced from present-day temperature measurements

    Corrosion pit depth extreme value prediction from limited inspection data

    Get PDF
    Passive alloys like stainless steels are prone to localized corrosion in chlorides containing environments. The greater the depth of the localized corrosion phenomenon, the more dramatic the related damage that can lead to a structure weakening by fast perforation. In practical situations, because measurements are time consuming and expensive, the challenge is usually to predict the maximum pit depth that could be found in a large scale installation from the processing of a limited inspection data. As far as the parent distribution of pit depths is assumed to be of exponential type, the most successful method was found in the application of the statistical extreme-value analysis developed by Gumbel. This study aims to present a new and alternative methodology to the Gumbel approach with a view towards accurately estimating the maximum pit depth observed on a ferritic stainless steel AISI 409 subjected to an accelerated corrosion test (ECC1) used in automotive industry. This methodology consists in characterising and modelling both the morphology of pits and the statistical distribution of their depths from a limited inspection dataset. The heart of the data processing is based on the combination of two recent statistical methods that avoid making any choice about the type of the theoretical underlying parent distribution of pit depths: the Generalized Lambda Distribution (GLD) is used to model the distribution of pit depths and the Bootstrap technique to determine a confidence interval on the maximum pit depth

    Deep temperatures in the Paris Basin using tectonic-heat flow modelling

    No full text
    International audienceThe determination of deep temperatures in a basin is one of the key parameters in the exploration of geothermal energy. This study, carried out as part of the CLASTIQ-2 project, presents a 3 temperatures in the Paris Basin derived through a thermal-tectonic forward modelling method, calibrated using subsurface temperature values. The temperature dataset required for the calibration was compiled in 2007 as part of the CLASTIQ-1 project. The temperature measurement dataset is largely composed of BHT (some 2443 values). These BHT measurements required correction due to the thermal disturbance created during drilling. After correction, which was carried out using the Instantaneous Cylinder Source (ICS) method, 494 corrected BHT (BHTx) values were available for the modelling of the Paris Basin. In addition to these BHTx, some 15 DST measurements that are considered as close to the thermal equilibrium (i.e., ±5°C) were added to the temperature calibration values. According to this dataset of BHTx and DST, the average gradient in the Paris Basin was calculated as 34.9°C/km when the surface temperature is fixed at 10°C. The temperature values collected were then used to calibrate the tectonic-heat flow modelling. The model was computed at the lithospheric scale but focused on the temperature field in the sedimentary basin fill. The model takes into account the geodynamic evolution of the last 20 My, the heat production, and the specific heat conduction of each defined sedimentary layer. The result is a 3D thermal block that is presented in the form of isodepth maps. The results are strongly influenced by thermal conductivity variations such as those due to differences in sediment composition while faults create some more localised influences. The presence of anomalously radiogenic bodies beneath the basin, and/or by variations in lithosphere thickness resulting in possible heat production anomalies strongly influence the thermal variations the Paris Basin. The Alpine Orogeny created a slight temperature increase in the south-eastern part of the basin and inhomogeneities in the lithology of the basement generating additional sources of variation in the sedimentary pil

    Active Control of Silicon Nanotweezers Detects Enzymatic Reaction at the Molecular Level

    No full text
    International audienceThis work achieved the control of micromachined tweezers for the enhancement of the sensing of DNA molecules and related enzymatic reactions. The mechanical stiffness of the silicon nanotweezers is decreased by feedback design and the sensitivity of the system is drastically improved

    The protective role of transferrin in Müller glial cells after iron-induced toxicity

    Get PDF
    PURPOSE: Transferrin (Tf) expression is enhanced by aging and inflammation in humans. We investigated the role of transferrin in glial protection. METHODS: We generated transgenic mice (Tg) carrying the complete human transferrin gene on a C57Bl/6J genetic background. We studied human (hTf) and mouse (mTf) transferrin localization in Tg and wild-type (WT) C57Bl/6J mice using immunochemistry with specific antibodies. Müller glial (MG) cells were cultured from explants and characterized using cellular retinaldehyde binding protein (CRALBP) and vimentin antibodies. They were further subcultured for study. We incubated cells with FeCl(3)-nitrilotriacetate to test for the iron-induced stress response; viability was determined by direct counting and measurement of lactate dehydrogenase (LDH) activity. Tf expression was determined by reverse transcriptase-quantitative PCR with human- or mouse-specific probes. hTf and mTf in the medium were assayed by ELISA or radioimmunoassay (RIA), respectively. RESULTS: mTf was mainly localized in retinal pigment epithelium and ganglion cell layers in retina sections of both mouse lines. hTf was abundant in MG cells. The distribution of mTf and hTf mRNA was consistent with these findings. mTf and hTf were secreted into the medium of MG cell primary cultures. Cells from Tg mice secreted hTf at a particularly high level. However, both WT and Tg cell cultures lose their ability to secrete Tf after a few passages. Tg MG cells secreting hTf were more resistant to iron-induced stress toxicity than those no longer secreted hTf. Similarly, exogenous human apo-Tf, but not human holo-Tf, conferred resistance to iron-induced stress on MG cells from WT mice. CONCLUSIONS: hTf localization in MG cells from Tg mice was reminiscent of that reported for aged human retina and age-related macular degeneration, both conditions associated with iron deposition. The role of hTf in protection against toxicity in Tg MG cells probably involves an adaptive mechanism developed in neural retina to control iron-induced stress
    corecore